Abstract/References

Cellular carcinogenesis in preleukemic conditions:drivers and defenses

Koki Ueda, Kazuhiko Ikeda

Author information
  • Koki Ueda

    Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University

  • Kazuhiko Ikeda

    Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University

Abstract

Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.

The cintent of reseach paper

References

1. Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med, 358:1909-1918, 2008.


2. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med, 361:1058-1066, 2009.


3. Cancer Genome Atlas Research N, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 368:2059-2074, 2013.


4. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med, 374:2209-2221, 2016.


5. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med, 371:2477-2487, 2014.


6. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med, 371:2488-2498, 2014.


7. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med, 20:1472-1478, 2014.


8. Kennedy JA, Ebert BL. Clinical Implications of Genetic Mutations in Myelodysplastic Syndrome. J Clin Oncol, 35:968-974, 2017.


9. Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet, 49:204-212, 2017.


10. Spivak JL. Myeloproliferative Neoplasms. N Engl J Med, 376: 2168-2181, 2017.


11. Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med, 24: 1015-1023, 2018.


12. Gao T, Ptashkin R, Bolton KL, et al. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nat Commun, 12: 338, 2021.


13. Saiki R, Momozawa Y, Nannya Y, et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med, 27: 1239-1249, 2021.


14. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286: 531-537, 1999.


15. Debernardi S, Lillington DM, Chaplin T, et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer, 37: 149-158, 2003.


16. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med, 350: 1617-1628, 2004.


17. Buenrostro JD, Corces MR, Lareau CA, et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 173: 1535-1548 e1516, 2018.


18. van Galen P, Hovestadt V, Wadsworth Ii MH, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell, 176: 1265-1281 e1224, 2019.


19. Prada-Arismendy J, Arroyave JC, Rothlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev, 31: 63-76, 2017.


20. Avellino R, Delwel R. Expression and regulation of C/EBPalpha in normal myelopoiesis and in malignant transformation. Blood, 129: 2083-2091, 2017.


21. Koschmieder S, Rosenbauer F, Steidl U, Owens BM, Tenen DG. Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol, 81: 368-377, 2005.


22. Crispino JD, Horwitz MS. GATA factor mutations in hematologic disease. Blood, 129: 2103-2110, 2017.


23. Katsumura KR, Bresnick EH, Group GFM. The GATA factor revolution in hematology. Blood, 129: 2092-2102, 2017.


24. Sun Y, Zhou B, Mao F, et al. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell, 34: 643-658 e645, 2018.


25. Rosenbauer F, Koschmieder S, Steidl U, Tenen DG. Effect of transcription-factor concentrations on leukemic stem cells. Blood, 106: 1519-1524, 2005.


26. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood, 129: 2070-2082, 2017.


27. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science, 297: 1183-1186, 2002.


28. Raser JM, O'Shea EK. Control of stochasticity in eukaryotic gene expression. Science, 304: 1811-1814, 2004.


29. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453: 544-547, 2008.


30. Balazsi G, van Oudenaarden A, Collins JJ. Cellular decision making and biological noise: from microbes to mammals. Cell, 144: 910-925, 2011.


31. Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science, 280: 585-590, 1998.


32. Wheat JC, Sella Y, Willcockson M, et al. Single-molecule imaging of transcription dynamics in somatic stem cells. Nature, 583: 431-436, 2020.


33. Wheat JC, Steidl U. Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood, 138: 625-636, 2021.


34. Bustin M, Lehn DA, Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta, 1049: 231-243, 1990.


35. Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet, 10: 94-100, 1994.


36. Elton TS, Reeves R. Purification and postsynthetic modifications of Friend erythroleukemic cell high mobility group protein HMG-I. Anal Biochem, 157: 53-62, 1986.


37. Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell, 71:777-789, 1992.


38. Cui T, Leng F. Specific recognition of AT-rich DNA sequences by the mammalian high mobility group protein AT-hook 2: a SELEX study. Biochemistry, 46: 13059-13066, 2007.


39. Xu M, Sharma P, Pan S, Malik S, Roeder RG, Martinez E. Core promoter-selective function of HMGA1 and Mediator in Initiator-dependent transcription. Genes Dev, 25: 2513-2524, 2011.


40. Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol, 2: 5, 2014.


41. Zhou X, Benson KF, Ashar HR, Chada K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature, 376: 771-774, 1995.


42. Sgarra R, Rustighi A, Tessari MA, et al. Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett, 574: 1-8, 2004.


43. Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet, 10: 436-444, 1995.


44. Rogalla P, Drechsler K, Frey G, et al. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol, 149: 775-779, 1996.


45. Narita M, Narita M, Krizhanovsky V, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell, 126: 503-514, 2006.


46. Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135: 227-239, 2008.


47. Ashar HR, Chouinard RA, Jr., Dokur M, Chada K. In vivo modulation of HMGA2 expression. Biochim Biophys Acta, 1799: 55-61, 2010.


48. Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol, 55: 775-788, 2019.


49. Mansoori B, Mohammadi A, Ditzel HJ, et al. HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel), 12, 2021.


50. Andrieux J, Demory JL, Dupriez B, et al. Dysregulation and overexpression of HMGA2 in myelofibrosis with myeloid metaplasia. Genes Chromosomes Cancer, 39: 82-87, 2004.


51. Andrieux J, Bilhou-Nabera C, Lippert E, et al. Expression of HMGA2 in PB leukocytes and purified CD34+ cells from controls and patients with Myelofibrosis and myeloid metaplasia. Leuk Lymphoma, 47: 1956-1959, 2006.


52. Guglielmelli P, Zini R, Bogani C, et al. Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms’ tumor gene 1 (WT1). Stem Cells, 25: 165-173, 2007.


53. Harada-Shirado K, Ikeda K, Ogawa K, et al. Dysregulation of the MIRLET7/HMGA2 axis with methylation of the CDKN2A promoter in myeloproliferative neoplasms. Br J Haematol, 168: 338-349, 2015.


54. Chen CC, You JY, Lung J, et al. Aberrant let7a/HMGA2 signaling activity with unique clinical phenotype in JAK2-mutated myeloproliferative neoplasms. Haematologica, 102: 509-518, 2017.


55. Ueda K, Ikeda K, Ikezoe T, et al. Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms. Blood Adv, 1: 1001-1015, 2017.


56. Rommel B, Rogalla P, Jox A, et al. HMGI-C, a member of the high mobility group family of proteins, is expressed in hematopoietic stem cells and in leukemic cells. Leuk Lymphoma, 26: 603-607, 1997.


57. Meyer B, Krisponeit D, Junghanss C, Murua Escobar H, Bullerdiek J. Quantitative expression analysis in peripheral blood of patients with chronic myeloid leukaemia: correlation between HMGA2 expression and white blood cell count. Leuk Lymphoma, 48: 2008-2013, 2007.


58. Vitkeviciene A, Baksiene S, Borutinskaite V, Navakauskiene R. Epigallocatechin-3-gallate and BIX-01294 have different impact on epigenetics and senescence modulation in acute and chronic myeloid leukemia cells. Eur J Pharmacol, 838: 32-40, 2018.


59. Odero MD, Grand FH, Iqbal S, et al. Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia, 19: 245-252, 2005.


60. Marquis M, Beaubois C, Lavallee VP, et al. High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia. Blood Cancer J, 8: 68, 2018.


61. Murakami Y, Inoue N, Shichishima T, et al. Deregulated expression of HMGA2 is implicated in clonal expansion of PIGA deficient cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol, 156: 383-387, 2012.


62. Inoue N, Izui-Sarumaru T, Murakami Y, et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood, 108: 4232-4236, 2006.


63. Kristjansdottir K, Fogarty EA, Grimson A. Systematic analysis of the Hmga2 3’ UTR identifies many independent regulatory sequences and a novel interaction between distal sites. RNA, 21: 1346-1360, 2015.


64. Balatti V, Croce CM. Small Non-Coding RNAs in Leukemia. Cancers (Basel), 14, 2022.


65. Ramzi M, Shokrgozar N. MicroRNAs: Regulatory Biomarkers in Acute Myeloid Leukemia and Graft Versus Host Disease. Clin Lab, 68, 2022.


66. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev, 21: 1025-1030, 2007.


67. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315: 1576-1579, 2007.


68. Storlazzi CT, Albano F, Locunsolo C, et al. t(3; 12)(q26; q14) in polycythemia vera is associated with upregulation of the HMGA2 gene. Leukemia, 20: 2190-2192, 2006.


69. Aliano S, Cirmena G, Garuti A, et al. HMGA2 overexpression in polycythemia vera with t(12; 21)(q14; q22). Cancer Genet Cytogenet, 177: 115-119, 2007.


70. Etienne A, Carbuccia N, Adelaide J, et al. Rearrangements involving 12q in myeloproliferative disorders: possible role of HMGA2 and SOCS2 genes. Cancer Genet Cytogenet, 176: 80-88, 2007.


71. Guglielmelli P, Tozzi L, Pancrazzi A, et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol, 35: 1708-1718, 2007.


72. Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera. Haematologica, 93: 1009-1016, 2008.


73. Martin SE, Sausen M, Joseph A, Kingham BF, Martin ES. Identification of a HMGA2-EFCAB6 gene rearrangement following next-generation sequencing in a patient with a t(12; 22)(q14.3; q13.2) and JAK2V617F-positive myeloproliferative neoplasm. Cancer Genet, 205: 295-303, 2012.


74. Bernues M, Gonzalez T, Corchete LA, et al. t(10; 12)(q24; q15): A new cytogenetic marker in hematological malignancies. Cancer Genet, 264-265: 60-65, 2022.


75. Yazarlou F, Kadkhoda S, Ghafouri-Fard S. Emerging role of let-7 family in the pathogenesis of hematological malignancies. Biomed Pharmacother, 144: 112334, 2021.


76. Viswanathan SR, Powers JT, Einhorn W, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet, 41: 843-848, 2009.


77. Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Front Genet, 8: 31, 2017.


78. Copley MR, Babovic S, Benz C, et al. The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol, 15: 916-925, 2013.


79. Rowe RG, Wang LD, Coma S, et al. Developmental regulation of myeloerythroid progenitor function by the Lin28b-let-7-Hmga2 axis. J Exp Med, 213: 1497-1512, 2016.


80. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 434: 1144-1148, 2005.


81. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med, 352: 1779-1790, 2005.


82. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med, 3: e270, 2006.


83. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med, 369: 2379-2390, 2013.


84. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med, 369: 2391-2405, 2013.


85. Guglielmelli P, Biamonte F, Score J, et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood, 118: 5227-5234, 2011.


86. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer, 12: 599-612, 2012.


87. Sashida G, Wang C, Tomioka T, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med, 213: 1459-1477, 2016.


88. Shimizu T, Kubovcakova L, Nienhold R, et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J Exp Med, 213: 1479-1496, 2016.


89. Ikeda K, Mason PJ, Bessler M. 3’UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood, 117: 5860-5869, 2011.


90. Sun Y, Kubota S, Iimori M, et al. The acidic domain of Hmga2 and the domain's linker region are critical for driving self-renewal of hematopoietic stem cell. Int J Hematol, 115: 553-562, 2022.


91. Oguro H, Yuan J, Tanaka S, et al. Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes. J Exp Med, 209: 445-454, 2012.


92. Efanov A, Zanesi N, Coppola V, et al. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia. Blood Cancer J, 4: e227, 2014.


93. Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia, 22: 87-95, 2008.


94. Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol, 23: 8520-8530, 2005.


95. Zingariello M, Martelli F, Ciaffoni F, et al. Characterization of the TGF-beta1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood, 121: 3345-3363, 2013.


96. Dutta A, Hutchison RE, Mohi G. Hmga2 promotes the development of myelofibrosis in Jak2(V617F) knockin mice by enhancing TGF-beta1 and Cxcl12 pathways. Blood, 130: 920-932, 2017.


97. Li L, Kim JH, Lu W, et al. HMGA1 chromatin regulators induce transcriptional networks involved in GATA2 and proliferation during MPN progression. Blood, 139: 2797-2815, 2022.


98. Minakawa K, Yokokawa T, Ueda K, et al. Myeloproliferative neoplasm-driving Calr frameshift promotes the development of pulmonary hypertension in mice. J Hematol Oncol, 14: 52, 2021.


99. Bai J, Yokomizo-Nakano T, Kubota S, et al. Overexpression of Hmga2 activates Igf2bp2 and remodels transcriptional program of Tet2-deficient stem cells in myeloid transformation. Oncogene, 40: 1531-1541, 2021.


100. Moison C, Spinella JF, Chagraoui J, et al. HMGA2 expression defines a subset of human AML with immature transcriptional signature and vulnerability to G2/M inhibition. Blood Adv, 6: 4793-4806, 2022.


101. Miao Y, Cui T, Leng F, Wilson WD. Inhibition of high-mobility-group A2 protein binding to DNA by netropsin: a biosensor-surface plasmon resonance assay. Anal Biochem, 374: 7-15, 2008.


102. Nana AW, Chin YT, Lin CY, et al. Tetrac downregulates beta-catenin and HMGA2 to promote the effect of resveratrol in colon cancer. Endocr Relat Cancer, 25: 279-293, 2018.


103. Huang YM, Cheng CH, Pan SL, Yang PM, Lin DY, Lee KH. Gene Expression Signature-Based Approach Identifies Antifungal Drug Ciclopirox As a Novel Inhibitor of HMGA2 in Colorectal Cancer. Biomolecules, 9, 2019.


104. Roos M, Pradere U, Ngondo RP, et al. A Small-Molecule Inhibitor of Lin28. ACS Chem Biol, 11: 2773-2781, 2016.


105. Shvarts A, Steegenga WT, Riteco N, et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J, 15: 5349-5357, 1996.


106. Xiong S, Pant V, Zhang Y, et al. The p53 inhibitor Mdm4 cooperates with multiple genetic lesions in tumourigenesis. J Pathol, 241: 501-510, 2017.


107. Miranda PJ, Buckley D, Raghu D, et al. MDM4 is a rational target for treating breast cancers with mutant p53. J Pathol, 241: 661-670, 2017.


108. Jin Y, Zeng SX, Sun XX, et al. MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2. Mol Cell Biol, 28: 1218-1229, 2008.


109. Carrillo AM, Bouska A, Arrate MP, Eischen CM. Mdmx promotes genomic instability independent of p53 and Mdm2. Oncogene, 34: 846-856, 2015.


110. Liu T, Zhang H, Yi S, Gu L, Zhou M. Mutual regulation of MDM4 and TOP2A in cancer cell proliferation. Mol Oncol, 13: 1047-1058, 2019.


111. Ueda K, Kumari R, Schwenger E, et al. MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell, 39: 529-547 e527, 2021.


112. Ueda K. Murine double minute X plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol, 122: 10-18, 2023.


113. Han X, Medeiros LJ, Zhang YH, et al. High Expression of Human Homologue of Murine Double Minute 4 and the Short Splicing Variant, HDM4-S, in Bone Marrow in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome. Clin Lymphoma Myeloma Leuk, 16 Suppl: S30-38, 2016.


114. Carvajal LA, Neriah DB, Senecal A, et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med, 10, 2018.


115. Quintas-Cardama A, Hu C, Qutub A, et al. p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia, 31: 1296-1305, 2017.


116. Li L, Tan Y, Chen X, et al. MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS One, 9: e113088, 2014.


117. Danovi D, Meulmeester E, Pasini D, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol, 24: 5835-5843, 2004.


118. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. p53 lesions in leukemic transformation. N Engl J Med, 364: 488-490, 2011.


119. Marine JC, Jochemsen AG. MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harb Perspect Med, 6, 2016.


120. Dewaele M, Tabaglio T, Willekens K, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest, 126: 68-84, 2016.


121. Rallapalli R, Strachan G, Cho B, Mercer WE, Hall DJ. A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J Biol Chem, 274: 8299-8308, 1999.


122. Bezzi M, Teo SX, Muller J, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev, 27: 1903-1916, 2013.


123. Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev, 29: 63-80, 2015.


124. Gerhart SV, Kellner WA, Thompson C, et al. Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep, 8: 9711, 2018.


125. Bieging-Rolett KT, Kaiser AM, Morgens DW, et al. Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Mol Cell, 80: 452-469 e459, 2020.


126. Phillips A, Teunisse A, Lam S, et al. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem, 285: 29111-29127, 2010.


127. Xiong S, Pant V, Suh YA, et al. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res, 70: 7148-7154, 2010.


128. Rosenbauer F, Wagner K, Kutok JL, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet, 36: 624-630, 2004.


129. Ko M, Bandukwala HS, An J, et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A, 108: 14566-14571, 2011.


130. Lee BH, Tothova Z, Levine RL, et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell, 12: 367-380, 2007.


131. Hermeking H, Eick D. Mediation of c-Myc-induced apoptosis by p53. Science, 265: 2091-2093, 1994.


132. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell, 83: 993-1000, 1995.


133. de Stanchina E, McCurrach ME, Zindy F, et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev, 12: 2434-2442, 1998.


134. Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell, 92: 713-723, 1998.


135. Stott FJ, Bates S, James MC, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J, 17: 5001-5014, 1998.


136. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell, 92: 725-734, 1998.


137. Zindy F, Eischen CM, Randle DH, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev, 12: 2424-2433, 1998.


138. Chen L, Li C, Pan Y, Chen J. Regulation of p53-MDMX interaction by casein kinase 1 alpha. Mol Cell Biol, 25: 6509-6520, 2005.


139. Wu S, Chen L, Becker A, Schonbrunn E, Chen J. Casein kinase 1alpha regulates an MDMX intramolecular interaction to stimulate p53 binding. Mol Cell Biol, 32: 4821-4832, 2012.


140. Chen L, Borcherds W, Wu S, et al. Autoinhibition of MDMX by intramolecular p53 mimicry. Proc Natl Acad Sci U S A, 112: 4624-4629, 2015.


141. Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108: 837-847, 2002.


142. Scheller M, Huelsken J, Rosenbauer F, et al. Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol, 7: 1037-1047, 2006.


143. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene, 36: 1461-1473, 2017.


144. Gruszka AM, Valli D, Alcalay M. Wnt Signalling in Acute Myeloid Leukaemia. Cells, 8, 2019.


145. Cobas M, Wilson A, Ernst B, et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med, 199: 221-229, 2004.


146. Huang Q, Chen L, Schonbrunn E, Chen J. MDMX inhibits casein kinase 1alpha activity and stimulates Wnt signaling. EMBO J, 39: e104410, 2020.


147. Marcellino BK, Hoffman R, Tripodi J, et al. Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53. Blood Adv, 2: 3581-3589, 2018.


148. Munisamy M, Mukherjee N, Thomas L, et al. Therapeutic opportunities in cancer therapy: targeting the p53-MDM2/MDMX interactions. Am J Cancer Res, 11: 5762-5781, 2021.


149. Zhang S, Lou J, Li Y, et al. Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions. J Med Chem, 64: 10621-10640, 2021.


150. Eskandari M, Shi Y, Liu J, et al. The expression of MDM2, MDM4, p53 and p21 in myeloid neoplasms and the effect of MDM2/MDM4 dual inhibitor. Leuk Lymphoma, 62: 167-175, 2021.


151. Saygin C, Carraway HE. Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev, 48: 100791, 2021.


152. Sidorova OA, Sayed S, Paszkowski-Rogacz M, et al. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells, 11, 2022.


153. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature, 500: 415-421, 2013.


154. Federico A, Forzati F, Esposito F, et al. Hmga1/Hmga2 double knock-out mice display a “superpygmy” phenotype. Biol Open, 3: 372-378, 2014.


155. Garcia D, Warr MR, Martins CP, Brown Swigart L, Passegue E, Evan GI. Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev, 25: 1746-1757, 2011.

Figures