Abstract/References

Harnessing allogeneic CD4⁺ T cells to reinvigorate host endogenous antitumor immunity

Kazuhiro Mochizuki

Author information
  • Kazuhiro Mochizuki

    Department of Pediatric Oncology, Fukushima Medical University Hospital

Abstract

Immune checkpoint blockade (ICB) therapies developed over the past decade have been among the most promising approaches for the treatment of patients with advanced cancers. However, the overall objective response rate of ICB therapy for various cancers remains insufficient. Hence, novel strategies are required to improve the efficacy of immunotherapy for advanced cancers. The graft-versus-tumor (GVT) effect, which reflects strong antitumor immunity, is known to occur after allogeneic hematopoietic stem cell transplantation (HSCT). The GVT effect is mainly caused by transplanted donor lymphocytes that recognize and react to distinct alloantigens on tumor cells. In contrast, transplanted allogeneic cells can, in some instances, induce endogenous antitumor immunity in recipients if the graft has been rejected. Because of this ability, allogeneic cells have also been used to induce endogenous antitumor immunity without HSCT, and their beneficial immune response is referred to as the “allogenic effect.” Here, we review the usefulness of allogeneic cells, particularly allogeneic CD4+ T cells, in cancer immunotherapy by highlighting their unique potential to induce host endogenous antitumor immunity.

The cintent of reseach paper

References

1. Yang Y. Cancer immunotherapy:harnessing the immune system to battle cancer. J Clin Invest, 125:3335-3337, 2015.


2. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol, 8(6):467-477, 2008.


3. Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity, 48(3):434-452, 2018.


4. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade:a common denominator approach to cancertherapy. Cancer Cell, 27(4):450-461, 2015.


5. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med, 366(26):2455-2465, 2012.


6. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med, 372(4):311-319, 2015.


7. Zhang X, Yang Z, An Y, et al. Clinical benefits of PD-1/PD-L1 inhibitors in patients with metastatic colorectalcancer:a systematic review and meta-analysis. World J Surg Oncol, 20(1):93, 2022. doi:10.1186/s12957-022-02549-7.


8. Chen L, Mo DC, Hu M, Zhao SJ, Yang QW, Huang ZL. PD-1/PD-L1 inhibitor monotherapy in recurrent or metastatic squamous cell carcinoma of the head and neck:a meta-analysis. Am J Otolaryngol, 43(2):103324, 2022. doi:10.1016/j.amjoto.2021.103324.


9. Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res, 77:817-822, 2017.


10. Pitt JM, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer:tumor-intrinsic and -extrinsic factors. Immunity, 44:1255-1269, 2016.


11. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med, 378:158-168, 2018.


12. Young A, Quandt Z, Bluestone JA. The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunol Res, 6(12):1445-1452, 2018.


13. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med, 378:439-448, 2018.


14. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med, 24(1):20-28, 2018.


15. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood, 128(13):1688-1700, 2016.


16. Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood, 118(23):6050-6056, 2011.


17. Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med, 22(1):26-36, 2016.


18. D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells:the long and winding road to solid tumors. Cell Death Dis, 9(3):282, 2018. doi:10.1038/s41419-018-0278-6.


19. Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov, 8:1219-1226, 2018.


20. Zhao Y, Aldoss I, Qu C, et al. Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood, 137(4):471-484, 2021.


21. Reinert J, Beitzen-Heineke A, Wethmar K, Stelljes M, Fiedler W, Schwartz S. Loss of CD22 expression and expansion of a CD22dim subpopulation in adults with relapsed/refractory B-lymphoblastic leukaemia after treatment with Inotuzumab-Ozogamicin. Ann Hematol, 100(11):2727-2732, 2021.


22. Kuhn NF, Purdon TJ, van Leeuwen DG, et al. CD40 Ligand-Modified Chimeric Antigen Receptor T Cells Enhance Antitumor Function by Eliciting an Endogenous Antitumor Response. Cancer Cell, 35:473-488, 2019.


23. Kuhn NF, Lopez AV, Li X, Cai W, Daniyan AF, Brentjens RJ. CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function. Nat Commun, 11(1):6171, 2020. doi:10.1038/s41467-020-19833-3.


24. LiX, DaniyanAF, LopezAV, PurdonTJ, Brentjens RJ. Cytokine IL-36γ improves CAR T-cell functionality and induces endogenous antitumor response. Leukemia, 35(2):506-521, 2021.


25. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion. Science, 331:1565-1570, 2011.


26. Chen DS, Mellman I. Oncology meets immunology:the cancer-immunity cycle. Immunity, 39(1):1-10, 2013.


27. Melief CJM, Van Hall T, Arens R, Ossendorp F, Van der Burg SH. Therapeutic Cancer Vaccines. J Clin Invest, 125(9):3401-3412, 2015.


28. Akiyama Y, Tanosaki R, Inoue N, et al. Clinical response in Japanese metastatic melanoma patients treated with peptide cocktail-pulsed dendritic cells. J Transl Med, 3(1):4, 2005. doi:10.1186/1479-5876-3-4.


29. Verheye E, Melgar JB, Deschoemaeker S, et al. Dendritic Cell-Based Immunotherapy in Multiple Myeloma:Challenges, Opportunities, and Future Directions. Int J Mol Sci, 23(2):904, 2022. doi:10.3390/ijms23020904.


30. Bezu L, Kepp O, Cerrato G, et al. Trial watch:Peptide-based vaccines in anticancer therapy. Oncoimmunology, 7(12):e1511506, 2018.


31. Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer:an overview of clinical trials. Nat Rev Clin Oncol, 11(9):509-524, 2014.


32. Rosenberg SA, Yang JC, Restifo NP. Cancer Immunotherapy:Moving Beyond Current Vaccines. Nat Med, 10, 909-915, 2004.


33. Negrin RS. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program, 225-230, 2015.


34. Blazar BR, Hill GR, Murphy WJ. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol, 17:475-492, 2020.


35. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood, 112:4371-4383, 2008.


36. Reddy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JLM. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia response. Nat Med, 11(11): 1244-1249, 2005.


37. Boatsman EE, Fu CH, Song SX, Moore TB. Graft-versus-leukemia Effect on Infant Lymphoblastic Leukemia Relapsed After Sibling Hematopoietic Stem Cell Transplantation. J Pediatr Hematol Oncol, 32(2):e57-60, 2010.


38. WangY, Liu DH, Xu LP, et al. Superior Graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high- risk acute leukemia:an historic comparison. Biol Blood Marrow Transplant, 17:821-830, 2011.


39. Yu S, Huang F, Wang Y, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission:a prospective multicentre cohort study. Leukemia, 34:1433-1443, 2020.


40. Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal- cell carcinoma after nonmyeloablative allogeneic peripheral- blood stem- cell transplantation. N Engl J Med, 343(11): 750-758, 2000.


41. Aglietta M, Barkholt L, Schianca FC, et al. Reduced-intensity allogeneic hematopoietic stem cell transplantation in metastatic colorectal cancer as a novel adoptive cell therapy approach. The European group for blood and marrow transplantation experience. Biol Blood Marrow Transplant, 15(3):326-335, 2009.


42. Bishop MR, Fowler DH, Marchigiani D, et al. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol, 22(19):3886-3892, 2004.


43. Carella AM, Beltrami G, Corsetti MT, et al. Reduced intensity conditioning for allograft after cytoreductive autograft in metastatic breast cancer. Lancet, 366(9482):318-320, 2005.


44. Schianca FC, Ricchiardi A, Capaldi A, et al. Allogeneic hemopoietic stem cell transplantation in solid tumors. Transplant Proc, 37(6):2664-2666, 2005. doi:10.1016/j.transproceed.2005.06.050.


45. Barisic S, Childs RW. Graft-Versus-Solid-Tumor Effect:From Hematopoietic Stem Cell Transplantation to Adoptive Cell Therapies. Stem Cells, 40(6):556-563, 2022. doi:10.1093/stmcls/sxac021.


46. Yoshida H, Kusuki S, Hashii Y, Ohta H, Morio T, Ozono K. Ex vivo-expanded donor CD4(+) lymphocyte infusion against relapsing neuroblastoma: A transient graft-versus-tumor effect. Pediatr Blood Cancer, 52(7):895-897, 2009.


47. Sano H, Mochizuki K, Kobayashi S, et al. T-cell replete haploidentical stem cell transplantation with low dose anti-thymocyte globulin for relapsed/refractory Ewing sarcoma family tumors. Cancer Rep (Hoboken), 5(7):e1519, 2022. doi: 10.1002/cnr2.1519.


48. Guo M, Hu KX, Yu CL, et al. Infusion of HLA-mismatched peripheral blood stem cells improves the outcome of chemotherapy for acute myeloid leukemia in elderly patients. Blood, 17:936-941, 2011.


49. Guo M, Hu KX, Liu GX, et al. HLA-mismatched stem-cell microtransplantation as postremission therapy for acute myeloid leukemia:long-term follow-up. J Clin Oncol, 30:4084-4090, 2012.


50. Guo M, Chao NJ, Li JY, et al. HLA-Mismatched Microtransplant in Older Patients Newly Diagnosed With Acute Myeloid Leukemia:Results From the Microtransplantation Interest Group. JAMA Oncol, 4:54-62, 2018.


51. Hu KX, Du X, Guo M, et al. Comparative study of micro-transplantation from HLA fully mismatched unrelated and partly matched related donors in acute myeloid leukemia. Am J Hematol, 95:630-636, 2020.


52. Rubio MT, Kim YM, Sachs T, Mapara M, Zhao G, Sykes M. Antitumor effect of donor marrow graft rejection induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning:critical role for recipient-derived IFN-gamma. Blood, 102(6):2300-2307, 2003.


53. Dey BR, McAfee S, Colby C, et al. Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biol Blood Marrow Transplant, 9(5):320-329, 2003.


54. O'DonnellPV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant, 8(7):377-386, 2002.


55. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol, 22(6):1136-1151, 2004.


56. Alexander P, Delorme EJ, Hall JG. The effect of lymphoid cells from the lymph of specifically immunized sheep on the growth of primary sarcomata in rats. Lancet, 1186-1189, 1966.


57. Katz DH, Ellman L, Paul WE, Green I, Benacerra B. Resistance of Guinea Pigs to Leukemia following transfer of immunocompetent allogeneic lymphoid cells. Cancer Res, 32:133-140, 1972.


58. Fefer A. Treatment of a moloney lymphoma with cyclophosphamide and H-2-incompatible spleen cells. Cancer Res, 33:641-644, 1973.


59. Ellman L, Katz DH, Green I, Paul WE, Benacerraf B. Mechanisms involved in the antileukemic effect of immunocompetent allogeneic lymphoid cell transfer. Cancer Res, 32(1):141-148, 1972.


60. Osborne DP Jr, Katz DH.The allogeneic effect in inbred mice.I.Experimental conditions for the enhancement of hapten-specific secondary antibody responses by the graft-versus-host reaction. J Exp Med, 136(3):439-454, 1972.


61. Porter DL, Connors JM, Van Deerlin VMD, et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol, 17:1234-1243, 1999.


62. Strair RK, Schaar D, Medina D, et al. Antineoplastic effects of partially HLA-matched irradiated blood mononuclear cells in patients with renal cell carcinoma. J Clin Oncol, 21:3785-3791, 2003.


63. Ballenn KK, Becker PS, Emmons RVB, et al. Low-dose total body irradiation followed by allogeneic lymphocyte infusion may induce remission in patients with refractory hematologic malignancy. Blood, 100:442-450, 2002.


64. Symons HJ, Levy MY, Wang J, et al. The allogeneic effect revisited:exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant, 14:499-509, 2008.


65. Su X, Guo S, Zhou C, Wang D, Ma W, Zhang S. A simple and effective method for cancer immunotherapy by inactivated allogeneic leukocytes infusion. Int J Cancer, 124:1142-1151, 2009.


66. Shi G, Zhou C, Wang D, Ma W, Liu B, Zhang S. Antitumor enhancement by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes. Cancer Lett, 343:42-50, 2014.


67. Tang Y, Ma W, Zhou C, Wang D, Zhang S. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity. J Chin Med Assoc, 81:316-323, 2018.


68. Har-Noy M, Zeira M, Weiss L, Slavin S. Completely Mismatched Allogeneic CD3/CD28 Cross-Linked Th1 Memory Cells Elicit Anti-Leukemia Effects in Unconditioned Hosts Without GVHD Toxicity. Leuk Res, 32(12):1903-1913, 2008.


69. Har-Noy M, Zeira M, Weiss L, Fingerut E, Or R, Slavin S. Allogeneic CD3/CD28 cross-linked Th1 memory cells provide potent adjuvant effects for active immunotherapy of leukemia/lymphoma. Leuk Res, 33:525-538, 2009.


70. Janikashvili N, LaCasse CJ, Larmonier C, et al. Allogeneic effector/memory Th-1 cells impair FoxP3 regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia. Blood,117:1555-1564, 2011.


71. Mochizuki K, Kobayashi S, Takahashi N, et al. Alloantigen-activated (AAA) CD4+ T cells reinvigorate host endogenous T cell immunity to eliminate pre-established tumors in mice. J Exp Clin Cancer Res, 40(1):314, 2021. doi:10.1186.


72. SuchinEJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo:new answers to an old question. J Immunol, 166(2):973-981, 2001.


73. Yang M, McKay D, Pollard JW, Lewis CE. Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Res, 78(19):5492-5503, 2018.


74. Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy, 9(3):289-302, 2017.


75. Noy R, Pollard JW. Tumor-Associated Macrophages:From Mechanisms to Therapy. Immunity, 41:49-61, 2014.


76. Qian BZ, Pollard JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell, 141:39-51, 2010.


77. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol, 14(7):399-416, 2017.


78. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel), 7(4):2443-2458, 2015.


79. Hurt B, Schulick R, Edil B, El Kasmi KC, Barnett CJ. Cancer-promoting mechanisms of tumor-associated neutrophils. Am J Surg, 214(5):938-944, 2017.


80. Bu L, Baba H, Yoshida N, et al. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 38:4887-4901, 2019.


81. Binnewies M, Roberts EW, Kersten K, et al. Understanding the Tumor Immune Microenvironment (TIME) for effective therapy. Nat Med, 24:541-550, 2018.


82. Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res, 79:4557-4566, 2019.

Figures