Current progress in genomics and targeted therapies for neurofibromatosis type 2

Ryo Hiruta, Kiyoshi Saito, Mudathir Bakhit, Masazumi Fujii

Author information
  • Ryo Hiruta

    Department of Neurosurgery, Fukushima Medical University

  • Kiyoshi Saito

    Department of Neurosurgery, Fukushima Rosai Hospital

  • Mudathir Bakhit

    Department of Neurosurgery, Fukushima Medical University

  • Masazumi Fujii

    Department of Neurosurgery, Fukushima Medical University


Neurofibromatosis type 2 (NF2), a multiple neoplasia syndrome, is a manifestation of an impaired expression of the merlin protein, exerting inhibitory effects on cell proliferation signals due to abnormalities of the NF2 gene located on chromosome 22. About half of patients inherit a germline mutation from a parent, and nearly 60% of de novo NF2 patients are estimated to have somatic mosaicism. The development of technical methods to detect NF2 gene mutation, including targeted deep sequencing from multiple tissues, improved the diagnostic rate of mosaic NF2. With improved understanding of genetics and pathogenesis, the diagnostic criteria for NF2 were updated to assist in identifying and diagnosing NF2 at an earlier stage. The understanding of cell signaling pathways interacting with merlin has led to the development of molecular-targeted therapies. Currently, several translational studies are searching for possible therapeutic agents targeting VEGF or VEGF receptors. Bevacizumab, an anti-VEGF monoclonal antibody, is widely used in many clinical trials aiming for hearing improvement or tumor volume control. Currently, a randomized, double-masked trial to assess bevacizumab is underway. In this randomized control trial, 12 other Japanese institutions joined the principal investigators in the clinical trial originating at Fukushima Medical University. In this review, we will be discussing the latest research developments regarding NF2 pathophysiology, including molecular biology, diagnosis, and novel therapeutics.

The cintent of reseach paper


1. Evans DG, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period:higher incidence than previously thought. Otol Neurotol, 26:93-97, 2005.

2. Evans DG. Neurofibromatosis type 2 (NF2):a clinical and molecular review. Orphanet J Rare Dis, 4:16, 2009.

3. Iwatate K, Yokoo T, Iwatate E, Ichikawa M, Sato T, Fujii M, et al. Population Characteristics and Progressive Disability in Neurofibromatosis Type 2. World Neurosurg, 106:653-660, 2017.

4. Otsuka G, Saito K, Nagatani T, Yoshida J. Age at symptom onset and long-term survival in patients with neurofibromatosis Type 2. J Neurosurg, 99:480-483, 2003.

5. Evans DG, Huson SM, Donnai D, Neary W, Blair V, Teare D, et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet, 29:841-846, 1992.

6. Asthagiri AR, Parry DM, Butman JA, Kim HJ, Tsilou ET, Zhuang Z, et al. Neurofibromatosis type 2. Lancet, 373:1974-1986, 2009.

7. Plotkin SR, Messiaen L, Legius E, Pancza P, Avery RA, Blakeley JO, et al. Updated diagnostic criteria and nomenclature for neurofibromatosis type 2 and schwannomatosis:An international consensus recommendation. Genet Med, 2022.

8. Wishart JH. Case of Tumours in the Skull, Dura Mater, and Brain. Edinb Med Surg J, 18:393-397, 1822.

9. Young DF, Eldridge R, Gardner WJ. Bilateral acoustic neuroma in a large kindred. JAMA, 214:347-353, 1970.

10. Zang KD. Cytological and cytogenetical studies on human meningioma. Cancer Genet Cytogenet, 6:249-274, 1982.

11. Seizinger BR, Martuza RL, Gusella JF. Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature, 322:644-647, 1986.

12. Seizinger BR, Rouleau G, Ozelius LJ, Lane AH, St George-Hyslop P, Huson S, et al. Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science, 236:317-319, 1987.

13. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature, 363:515-521, 1993.

14. Wolff RK, Frazer KA, Jackler RK, Lanser MJ, Pitts LH, Cox DR. Analysis of chromosome 22 deletions in neurofibromatosis type 2-related tumors. Am J Hum Genet, 51:478-485, 1992.

15. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell, 72:791-800, 1993.

16. Evans DG, Ramsden RT, Shenton A, Gokhale C, Bowers NL, Huson SM, et al. Mosaicism in neurofibromatosis type 2:an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J Med Genet, 44:424-428, 2007.

17. Evans DG, King AT, Bowers NL, Tobi S, Wallace AJ, Perry M, et al. Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing. Genet Med, 21:1525-1533, 2019.

18. Louvrier C, Pasmant E, Briand-Suleau A, Cohen J, Nitschke P, Nectoux J, et al. Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro Oncol, 20:917-929, 2018.

19. Evans DG, Hartley CL, Smith PT, King AT, Bowers NL, Tobi S, et al. Incidence of mosaicism in 1055 de novo NF2 cases:much higher than previous estimates with high utility of next-generation sequencing. Genet Med, 22:53-59, 2020.

20. D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci, 21:1504-1514, 2018.

21. Teranishi Y, Miyawaki S, Hongo H, Dofuku S, Okano A, Takayanagi S, et al. Targeted deep sequencing of DNA from multiple tissue types improves the diagnostic rate and reveals a highly diverse phenotype of mosaic neurofibromatosis type 2. J Med Genet, 58:701-711, 2021.

22. Shimizu T, Seto A, Maita N, Hamada K, Tsukita S, Tsukita S, et al. Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem, 277:10332-10336, 2002.

23. Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO. Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res, 68:5236-5245, 2008.

24. Neff BA, Voss SG, Schmitt WR, Driscoll CL, Link MJ, Beatty CW, et al. Inhibition of MEK pathway in vestibular schwannoma cell culture. Laryngoscope, 122:2269-2278, 2012.

25. Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG. Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol, 29:4235-4249, 2009.

26. Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell, 19:27-38, 2010.

27. de Vries M, van der Mey AG, Hogendoorn PC. Tumor Biology of Vestibular Schwannoma: A Review of Experimental Data on the Determinants of Tumor Genesis and Growth Characteristics. Otol Neurotol, 36:1128-1136, 2015.

28. Jin H, Sperka T, Herrlich P, Morrison H. Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature, 442:576-579, 2006.

29. Cooper J, Giancotti FG. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett, 588:2743-2752, 2014.

30. Hexter A, Jones A, Joe H, Heap L, Smith MJ, Wallace AJ, et al. Clinical and molecular predictors of mortality in neurofibromatosis 2:a UK national analysis of 1192 patients. J Med Genet, 52:699-705, 2015.

31. Selvanathan SK, Shenton A, Ferner R, Wallace AJ, Huson SM, Ramsden RT, et al. Further genotype--phenotype correlations in neurofibromatosis 2. Clin Genet, 77:163-170, 2010.

32. Smith MJ, Higgs JE, Bowers NL, Halliday D, Paterson J, Gillespie J, et al. Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations:clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet, 48:261-265, 2011.

33. Halliday D, Emmanouil B, Pretorius P, MacKeith S, Painter S, Tomkins H, et al. Genetic Severity Score predicts clinical phenotype in NF2. J Med Genet, 54:657-664, 2017.

34. Masuda A, Fisher LM, Oppenheimer ML, Iqbal Z, Slattery WH, Natural History C. Hearing changes after diagnosis in neurofibromatosis type 2. Otol Neurotol, 25:150-154, 2004.

35. Graamans K, Van Dijk JE, Janssen LW. Hearing deterioration in patients with a non-growing vestibular schwannoma. Acta Otolaryngol, 123:51-54, 2003.

36. Smith MJ, Bowers NL, Bulman M, Gokhale C, Wallace AJ, King AT, et al. Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis. Neurology, 88:87-92, 2017.

37. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86:353-364, 1996.

38. Caye-Thomasen P, Werther K, Nalla A, Bog-Hansen TC, Nielsen HJ, Stangerup SE, et al. VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol Neurotol, 26:98-101, 2005.

39. Koutsimpelas D, Stripf T, Heinrich UR, Mann WJ, Brieger J. Expression of vascular endothelial growth factor and basic fibroblast growth factor in sporadic vestibular schwannomas correlates to growth characteristics. Otol Neurotol, 28:1094-1099, 2007.

40. Plotkin SR, Stemmer-Rachamimov AO, Barker FG, 2nd, Halpin C, Padera TP, Tyrrell A, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med, 361:358-367, 2009.

41. Plotkin SR, Merker VL, Halpin C, Jennings D, McKenna MJ, Harris GJ, et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2:a retrospective review of 31 patients. Otol Neurotol, 33:1046-1052, 2012.

42. Eminowicz GK, Raman R, Conibear J, Plowman PN. Bevacizumab treatment for vestibular schwannomas in neurofibromatosis type two: report of two cases, including responses after prior gamma knife and vascular endothelial growth factor inhibition therapy. J Laryngol Otol, 126:79-82, 2012.

43. Mautner VF, Nguyen R, Kutta H, Fuensterer C, Bokemeyer C, Hagel C, et al. Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2. Neuro Oncol, 12:14-18, 2010.

44. Goutagny S, Kalamarides M. Medical treatment in neurofibromatosis type 2. Review of the literature and presentation of clinical reports. Neurochirurgie, 64:370-374, 2018.

45. Fujii M, Ichikawa M, Iwatate K, Bakhit M, Yamada M, Kuromi Y, et al. Bevacizumab Therapy of Neurofibromatosis Type 2 Associated Vestibular Schwannoma in Japanese Patients. Neurol Med Chir (Tokyo), 60:75-82, 2020.

46. Plotkin SR, Duda DG, Muzikansky A, Allen J, Blakeley J, Rosser T, et al. Multicenter, Prospective, Phase II and Biomarker Study of High-Dose Bevacizumab as Induction Therapy in Patients With Neurofibromatosis Type 2 and Progressive Vestibular Schwannoma. J Clin Oncol, 37:3446-3454, 2019.

47. Fujii M, Kobayakawa M, Saito K, Inano A, Morita A, Hasegawa M, et al. Rationale and Design of BeatNF2 Trial:A Clinical Trial to Assess the Efficacy and Safety of Bevacizumab in Patients with Neurofibromatosis Type 2 Related Vestibular Schwannoma. Curr Oncol, 28:726-739, 2021.

48. Tamura R, Morimoto Y, Sato M, Kuranari Y, Oishi Y, Kosugi K, et al. Difference in the hypoxic immunosuppressive microenvironment of patients with neurofibromatosis type 2 schwannomas and sporadic schwannomas. J Neurooncol, 146:265-273, 2020.

49. Tamura R, Fujioka M, Morimoto Y, Ohara K, Kosugi K, Oishi Y, et al. A VEGF receptor vaccine demonstrates preliminary efficacy in neurofibromatosis type 2. Nat Commun, 10:5758, 2019.

50. Karajannis MA, Legault G, Hagiwara M, Ballas MS, Brown K, Nusbaum AO, et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol, 14:1163-1170, 2012.

51. Lim S, de Souza P. Imatinib in neurofibromatosis type 2. BMJ Case Rep, 2013:2013.

52. Plotkin SR, Halpin C, McKenna MJ, Loeffler JS, Batchelor TT, Barker FG, 2nd. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol, 31:1135-1143, 2010.

53. Giovannini M, Bonne NX, Vitte J, Chareyre F, Tanaka K, Adams R, et al. mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro Oncol, 16:493-504, 2014.

54. Karajannis MA, Legault G, Hagiwara M, Giancotti FG, Filatov A, Derman A, et al. Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol, 16:292-297, 2014.

55. Goutagny S, Raymond E, Esposito-Farese M, Trunet S, Mawrin C, Bernardeschi D, et al. Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol, 122:313-320, 2015.