Learning Bio- basic terms

Nguyen Thi Tu Van¹ Nguyen Quang Vinh²

¹University of Medicine and Pharmacy of Ho Chi Minh City

²Nguyen Tri Phuong Hospital

JICA project - August 3, 2014

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval
- 4 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

For clinicians, understanding concepts and basic terms in statistics:

- to apply in reading and using information of published medical evidence
- to reinforce basic knowledge biostatistics required for designing research

4 D b 4 A

Statistics - Biostatistics

• Statistics

- a science (concepts, rules, procedures) and art of dealing with data
- to study of uncertainty, to obtain reliable results
- Biostatistics an application of statistics to:
 - medicine
 - biological sciences (education, psychology, agriculture...)
- Modern society
 - Reading
 - Writing
 - Statistical thinking: to make the strongest possible conclusions from limited amounts of data.

A D > A A P >

$Objectives \rightleftharpoons Statistics$

Objectives: (1) Organize & summarize data (2) Reach inferences: sample → population ⇒Statistics:

- Descriptive statistics \rightarrow (1)
- Inferential statistics: drawing of inferences→(2)
 - Estimation (point estimate & interval estimate → confidence interval)
 - Hypothesis testing \rightarrow reaching a decision (p value)
 - Parametric statistics
 - Non-parametric statistics << Distribution-free statistics

(日) (同) (三) (

Modeling, Predicting

Why basic terms?

```
    empowering belief:
Statistics = Terms + (Normal distribution + Others)
    and.
```

```
Terms = Basic terms + Others
```

< 口 > < 同

→ Ξ →

Category Summary measures

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Descriptive Statistics

- to categorize available data by grouping
- to describe its distribution by calculating summary measures

Category Summary measures

Outline

Introduction

- Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval
- 4 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

Nguyen Thi Tu Van, Nguyen Quang Vinh

 </l

< ∃ >

Category Summary measures

Grouping

- Raw data needs to be organized to be presented in a clearer way.
- Data must be grouped into categories, as an example below:

Age (years-old)	Frequency	Relative frequency	Cumulative frequency
Under 20	100	20%	100
20 - 39	350	70%	450
40 or over	50	10%	500

Category Summary measures

Outline

Introduction

Descriptive Statistics

Category

Summary measures

Inferential Statistics

- Estimation Confidence Interval
- A point estimate An interval estimate
- Interpretation a confidence interval
- 4 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

Nguyen Thi Tu Van, Nguyen Quang Vinh

 </l

< ∃ >

Category Summary measures

< 口 > < 同

Calculating summary data

Three summary measures:

- Mean (average) = Sum of all data / n
- Median = 50th percentile value
- Mode = Most frequent value(s)

Category Summary measures

Measures of dispersions

Four measures to show how data is spread around the summary measures (variability)

- Range from minimum to maximum
- Variance = Mean of squared differences of values from a mean
- Standard deviation (SD) = Square root of the variance.
 - SD indicates the mean of differences of values from the mean.
 - It measures absolute dispersion.
- Coefficient of variance (CV) = Ratio of SD to the mean.
 - CV indicates the extent of variability in relation to the mean.

- It measures relative dispersion.
- There is no unit to measure CV, therefore they can be compared between any sets of data.

Category Summary measures

The measures of position

- Two measures of position:
 - Percentile = percent of values at or below
 - Quartile = 25th, 50th, and 75th percentiles
 - Z-score = a standardized value indicating a distance between the value and the mean divided by (in units of) the standard deviation.

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval
- 🕘 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

Nguyen Thi Tu Van, Nguyen Quang Vinh

< ∃ >

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

< 口 > < 同

Why estimation?

• Two reasons:

- Infinite populations: incapable of complete examination
- Finite populations: cost, time
- In addition, estimation can help not to defer a conclusion until the whole population is observed

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

Estimators

- mean(s):
 - a single population mean: $ar{x}
 ightarrow \mu$
 - the difference between two population means unpaired, paired: $(ar{x_1} ar{x_2}) o (ar{\mu_1} ar{\mu_2})$
- proportion(s):
 - a single population proportion: $\hat{p}
 ightarrow p$ or $\hat{p}
 ightarrow \pi$
 - the difference of two population proportions: $(\hat{p_1}-\hat{p_2}) o (\pi_1-\pi_2)$
- variance(s):
 - a single population variance: $s^2
 ightarrow \sigma^2$
 - the ratio of two population variances: $\frac{s_1^2}{s^2} \rightarrow \frac{\sigma_1^2}{\sigma^2}$

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

< < >> < <>>><</>>

An estimation of these parameters

An estimation of these parameters:

- Point estimate
- Interval estimate

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures

Inferential Statistics

• Estimation - Confidence Interval

• A point estimate - An interval estimate

- Interpretation a confidence interval
- 4 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

< ∃ >

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

< 口 > < 同

 $\begin{array}{l} A \text{ point estimate} \\ {}_{\mathsf{Estimator}} \rightarrow {}_{\mathsf{Parameter}} \end{array}$

In many cases, a parameter may be estimated by more than one estimator.

- Example:
 - $\bullet~\mathsf{Sample}~\mathsf{mean}\to\mathsf{estimate}~\mathsf{population}~\mathsf{mean}$
 - $\bullet~{\sf Sample}~{\sf median} \to {\sf estimate}~{\sf population}~{\sf mean}$

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

An interval estimate

- In general, an interval estimate is obtained by the formula: estimator ± (reliability coefficient) × (standard error)
- What is different is the source of the reliability coefficient: In particular, when sampling is from a <u>normal</u> distribution with <u>known variance</u>, an interval estimate for μ may be expressed as: $\overline{x} \pm z_{\alpha/2}\sigma_{\overline{x}}$

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures

Inferential Statistics

- Estimation Confidence Interval
- A point estimate An interval estimate
- Interpretation a confidence interval
- 🕘 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

Nguyen Thi Tu Van, Nguyen Quang Vinh

 </l

< ∃ >

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

イロト (得) (言) (

How to interpret the interval

- In repeated sampling $100(1-\alpha)\%$ of all intervals of the form will in the long run include the population mean, μ
- The quantity (1α) , is called the confidence coefficient & The interval $\overline{x} \pm z_{\alpha/2}\sigma_{\overline{x}}$, is called the confidence interval for μ
- The most frequently used values are: .90, .95, .99, which have associated reliability factors, respectively, of 1.645, 1.96, 2.58

Estimation - Confidence Interval A point estimate - An interval estimate Interpretation a confidence interval

A D > A A P >

The practical interpretation

- We are $100(1-\alpha)\%$ confident that the single computed interval $\overline{x} \pm z_{\alpha/2}\sigma_{\overline{x}}$ contains the population mean, μ *Example: ...*
- E = margin error = maximum error = practical / clinical acceptable error:

$$E = z_{\alpha/2}\sigma_{\bar{x}} = z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

Hypothesis testing Hypotheses p-value The hypothesis testing procedur Power of Test

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval
- 🜗 Hypothesis testing p value
 - Hypothesis testing
 - Hypotheses
 - p-value
 - The hypothesis testing procedure
 - Power of Test

Nguyen Thi Tu Van, Nguyen Quang Vinh

I ⇒

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

Why hypothesis testing

- Hypothesis (H.): a statement concerns about some one or more populations
- Testing hypothesis: to aid researcher in reaching a decision concerning a population by examining a sample from that population

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

Hypothesis testing for

- mean(s)
 - a single population mean
 - the difference between two population means: unpaired, paired
- proportion(s)
 - a single population proportion
 - unpaired: a small sample, a sufficiently large sample
 - paired
 - the difference of two population proportions
- variance(s)
 - a single population variance
 - the difference of two population variances

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval
- 4 Hypothesis testing p value
 - Hypothesis testing

Hypotheses

- p-value
- The hypothesis testing procedure
- Power of Test

I ⇒

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

Two types of hypotheses

- (1) Research Hypotheses:
 - The conjecture or supposition
 - It may be the results of years of observation
 - Research H. leads directly to Statistical H.

(2) Statistical Hypotheses: Hypotheses are stated in such a way that they may be evaluated by appropriate statistical techniques.

- H_O
- H_A

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

Statistical Hypotheses

- H_O
 - The H_O is the hypothesis that is tested
 - The H_O should contain either =, ≤,≥
 (The statement concerns about some one or more population's parameters in term of equality or inequality)

• H_A

- What we hope or expect to be able to conclude as a result of the test usually should be placed in the H_A
- The $H_O \& H_A$ are complementary
- One-sided vs. Two-sided Hypothesis Tests

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

- Neither hypothesis testing nor statistical inference, in general, leads to proof a hypothesis
- It merely indicates whether the hypothesis is supported or not supported by the available data
- When we <u>fail to reject the H_O</u>, we do not say that it is true, but that it may be true
- When we speak of "<u>accepting</u>" a H_O, we have this limitation in mind & do not wish to convey the idea that "accepting" implies proof

Hypothesis testing Hypotheses **p-value** The hypothesis testing procedure Power of Test

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval

4 Hypothesis testing - p value

- Hypothesis testing
- Hypotheses

p-value

- The hypothesis testing procedure
- Power of Test

I ⇒

Introduction Descriptive Statistics Inferential Statistics Hypothesis testing - p value Determination of sample size Summary	Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

<u>Test s</u>tatistic ⇒p-value

General formula: $Test statistic = \frac{relevant statistic - hypothesized parameter}{S E of the relevant statistic} \Rightarrow p-value$ Example: $z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\bar{z}}}$

p-value:

- Probability of observing the difference if the H_{Ω} is true.
- An expression of how we believe in the H_{Ω} .
- Decision maker
- p-value overdependence

Hypothesis testing Hypotheses **p-value** The hypothesis testing procedure Power of Test

(日) (同) (三) (三)

Decision rule for a rejection or not the H_O

- α = type | error = level of significance (say, .01, .05, .10)
- β = type II error (say, .05, .10, .20)
- When we reject a H_O ⇐⇒ p < α, risk of committing a type I error, rejecting a true H_O
- When we fail to reject a H_O: risk of committing a type II error, "accepting" a false H_O

Hypothesis testing Hypotheses **p-value** The hypothesis testing procedure Power of Test

э

Type | & Type || error

Conditions under which type I & type Il errors may be committed (the four possibilities)		Actual Situation (Truth in the population)	
		H _o false	H _o true
The results in the study sample → Conclusion:	Reject H _o	Correct decision	Type I error
	Fail to reject H _o	Type II error	Correct decision

Hypothesis testing Hypotheses **p-value** The hypothesis testing procedure Power of Test

(日) (同) (日) (日) (日)

Testing Hypothesis \rightarrow Rejected or not rejected H_O

In the testing process, the H_O either is rejected or is not rejected:

- If H_O is not rejected, we will say that the data on which the test is based do not provide sufficient evidence to cause rejection
- If the testing process leads to rejection, we will say that the data at hand are not compatible with the H_O , but are supportive of some other hypothesis & may be designated by H_A (H_A a contradiction statement of H_O)

Hypothesis testing Hypotheses p-value **The hypothesis testing procedure** Power of Test

< 3 > .

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval

🜗 Hypothesis testing - p value

- Hypothesis testing
- Hypotheses
- p-value
- The hypothesis testing procedure
- Power of Test

Hypothesis testing Hypotheses p-value **The hypothesis testing procedure** Power of Test

The Five-Step practical procedure for Hypothesis Testing *(opt.)*

- Step 1: Set up H_O, H_A
 - 1. Data: The nature of the data (classification)
 - 2. Assumptions: The normality of the population distribution, equality of variances, independence of samples...
 - 3. Hypotheses: H_O, H_A
- Step 2: Define the test statistic
 - 4. Test statistic
 - 5. Distribution of the Test Statistic

Hypothesis testing Hypotheses p-value **The hypothesis testing procedure** Power of Test

The Five-Step practical procedure for Hypothesis Testing, *cont. (opt.)*

- Step 3: Define a rejection region: having determined a value for α
 - 6. Decision rule
- Step 4:
 - 7. Calculate the value of the test statistic, and compare it with the acceptance & rejection regions that have already been specified.
 - 8. State our decision: to reject H_O or to fail to reject H_O
- Step 5:
 - 9. Give a conclusion: this statement should be free of statistical jargon & should merely summarize the results of the analysis.

Hypothesis testing Hypotheses p-value **The hypothesis testing procedure** Power of Test

(日) (同) (三) (三)

э

A statistical package helps you only the step 4, but not for the other steps.

Nguyen Thi Tu Van, Nguyen Quang Vinh Learning Bio- basic terms

Hypothesis testing Hypotheses p-value The hypothesis testing procedure **Power of Test**

Outline

- Introduction
- 2 Descriptive Statistics
 - Category
 - Summary measures
- Inferential Statistics
 - Estimation Confidence Interval
 - A point estimate An interval estimate
 - Interpretation a confidence interval

🜗 Hypothesis testing - p value

- Hypothesis testing
- Hypotheses
- p-value
- The hypothesis testing procedure
- Power of Test

I ⇒

Hypothesis testing Hypotheses p-value The hypothesis testing procedure Power of Test

The Power of a Statistical Test (opt.)

- The probability of a type II error, β, has remained a phantom:
 - we know it is there,
 - but we don't know what it is
- One thing we can say is that: a wide C.I. for μ means that the corresponding 2-tailed test of Ho versus HA has a large chance of failing to reject a false Ho; that is β is large.

Hypothesis testing Hypotheses p-value The hypothesis testing procedure **Power of Test**

(日) (同) (三) (三)

Determining β (opt.)

- $\beta = P(\text{fail to reject } H_O \text{ when } H_O \text{ is false})$ $\iff 1 - \beta = P(\text{rejecting } H_O \text{ when } H_O \text{ is false})$
- 1 β represents the probability of making a correct decision in the event that H_O is false
- Since we like β to be small, that is we prefer 1 β to be large
- The value of 1 β is referred to as the power of test

Hypothesis testing Hypotheses p-value The hypothesis testing procedure **Power of Test**

Power of test (opt.)

Determination of sample size (opt.)

- Estimating a confidence interval: for descriptive purposes, investigators just need to consider the type I error.
- Testing a hypothesis: both type I & II errors need to be taken into account.
- When the sample size is fixed, because of some logistical reasons (financial, and/or time constrains):
 - the precision of the available data, and
 - whether this is meaningful for the study objective.

A D b 4 A b

Statistics:

- Descriptive statistics \rightarrow organize & summarize data
- Inferential statistics \rightarrow drawing of inferences
 - Estimation
 - Hypothesis testing
 - Modeling
- Estimation confidence interval, estimator very helpful as it gives a range of likely values

< <p>Image: A marked black

Hypothesis testing - p-value, or "surprise-level" value

A survey of 100 delivery cases in a population gave us the mean of newborn baby weight is 3,050 grams; 95% confidence interval is of (2,950 - 3,150 grams). Please give your explanation for the results.

- Please give your brief explanations of the p value.
 - ...
 ...
 ...
 ...