Basic Statistics

Nguyen Thi Tu Van Nguyen Quang Vinh

JICA project - August 2, 2015

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Outline

- 1 Introduction
- Estimation Confidence Interval
- 3 Hypothesis testing p value

Aim

For clinicians, understanding concepts in statistics:

- to read and use information of published medical evidence
- to reinforce basic knowledge biostatistics required for designing research

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Statistics - Biostatistics

- Statistics
 - · a science and art of dealing with data
 - · to study of uncertainty, to obtain reliable results
- Biostatistics an application of statistics to biological sciences: medicine, education, agriculture...
- Modern society Reading, Writing, Statistical thinking

Objectives:

- (1) Organize & summarize data
- (2) Reach inferences: sample → population Statistics:
 - Descriptive statistics→(1)
 - Inferential statistics: drawing of inferences→(2)
 - Estimation (point estimate & interval estimate ≡ confidence interval)
 - Hypothesis testing → reaching a decision (p value)
 - Parametric statistics
 - Non-parametric statistics << Distribution-free statistics
 - · Modeling, Predicting: a combination of estimation and hypothesis testing

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistic

Estimation - Confidence Interval Hypothesis testing - p value Summary

Why estimation?

- Two reasons:
 - Infinite populations: incapable of complete examination
 - · Finite populations: cost, time
- In addition, estimation can help not to defer a conclusion until the whole population is observed

Which estimators?

- mean(s):
 - ullet a single population mean: $ar x o \mu$
 - the difference between two population means unpaired, paired: $(\bar{x_1} - \bar{x_2}) \rightarrow (\bar{\mu_1} - \bar{\mu_2})$
- proportion(s):
 - a single population proportion: $\hat{p} \rightarrow p$ or $\hat{p} \rightarrow \pi$
 - the difference of two population proportions: $(\hat{
 ho_1}-\hat{
 ho_2})
 ightarrow (\pi_1-\pi_2)$
- variance(s):
 - ullet a single population variance: $s^2
 ightarrow \sigma^2$
 - the ratio of two population variances: $\frac{s_1^2}{s_2^2} \rightarrow \frac{\sigma_1^2}{\sigma_2^2}$

An estimation of these parameters includes: Point estimate & Interval estimate

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistic

Estimation - Confidence Interval Hypothesis testing - p value Summary

A point estimate $\mathsf{Estimator} \to \mathsf{Parameter}$

A parameter may be estimated by more than one estimator.

- Example:
 - ullet Sample mean o estimate population mean
 - Sample median → estimate population mean

An interval estimate

- In general, an interval estimate is obtained by the formula: estimator \pm (reliability coefficient) x (standard error)
- What is different is the source of the reliability coefficient: t,
 - When sampling is from an approximate normal distribution, and/or unknown variance, an interval estimate for μ may be expressed as: $\overline{x} \pm t_{df,\alpha/2}SE$
 - When sampling is from a normal distribution, with known variance, an interval estimate for μ may be expressed as: $\bar{x} \pm z_{\alpha/2} \sigma_{\bar{x}}$

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistic

Estimation - Confidence Interval

How to interpret the interval

- In repeated sampling $100(1-\alpha)\%$ of all intervals of the form will in the long run include the population mean, μ
- The quantity $(1-\alpha)$, is called the confidence coefficient & The interval $\bar{x} \pm z_{\alpha/2} \sigma_{\bar{x}}$, is called the confidence interval for μ
- The most frequently used values are: .90, .95, .99, which have associated reliability factors, respectively, of 1.645, 1.96, 2.58

The practical interpretation

- We are $100(1-\alpha)\%$ confident that the single computed interval $\overline{x}\pm z_{lpha/2}\sigma_{\overline{x}}$ contains the population mean, μ Example: ...
- E = margin error = maximum error = practical / clinical acceptable error:

$$E = z_{\alpha/2} \sigma_{\bar{x}} = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Why hypothesis testing?

- Hypothesis (H.): a statement concerns about some one or more populations
- Testing hypothesis: to aid researcher in reaching a decision concerning a population by examining a sample from that population

Two types of hypotheses

- (1) Research Hypotheses:
 - The conjecture or supposition
 - It may be the results of years of observation
 - Research H. leads directly to Statistical H.
- (2) Statistical Hypotheses: Hypotheses are stated in such a way that they may be evaluated by appropriate statistical techniques.
 - Ho
 - H_A

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Estimation - Confidence Interval Hypothesis testing - p value


Statistical Hypotheses

- Ho
 - The H_O is the hypothesis that is tested
 - The H_O should contain either $=, \leq, \geq$ (The statement concerns about some one or more population's parameters in term of equality or inequality)
- H_A
 - · What we hope or expect to be able to conclude as a result of the test usually should be placed in the H_A
- The H_O & H_A are complementary
- · One-sided vs. Two-sided Hypothesis Tests

Notes

- Neither hypothesis testing nor statistical inference leads to proof a hypothesis.
 - It merely indicates whether the hypothesis is supported or not supported by the available data

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Estimation - Confidence Interval Hypothesis testing - p value

p-value Test statistic \Longrightarrow p-value

General formula:

$$Teststatistic = \frac{relevantstatistic - hypothesizedparameter}{S.E. of the relevant statistic} \Rightarrow \textit{p-value} \\ \text{Example: } z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- p-value:
 - ullet Probability of observing the difference if the H_O is true.
 - An expression of how we believe in the H_O.
 - · Decision maker.
- p-value overdependence

Introduction
Estimation - Confidence Interval
Hypothesis testing - p value

Type I & Type II error

Conditions under which type I & type II errors may be committed (the four possibilities)		Actual Situation (Truth in the population)	
		H _o false	H _o true
The results in the study sample → Conclusion:	Reject H _o	Correct decision	Type I error
	Fail to reject H _o	Type II error	Correct decision

101 (6) (2) (3) 2 090

Nguyen Thi Tu Van, Nguyen Quang Vinh

Basic Statistics

Introduction
Estimation - Confidence Interval
Hypothesis testing - p value

Decision rule for a rejection or not the H_O

- α = risk of committing a type I error = level of significance (say, .01, .05, .10)
 - $\beta = \text{risk of committing a type II error (say, .05, .10, .20)}$
- When $p < \alpha$: we reject H_O , risk of rejecting a true H_O
- When we fail to reject a H_O , risk of "accepting" a false H_O
 - We do not say that it is true, but that it may be true
 - We do not wish to convey the idea that "accepting" implies $\operatorname{\mathsf{proof}}$

Testing Hypothesis \rightarrow Rejected or not rejected H_O

In the testing process, the H_O either is rejected or is not rejected:

- If H_O is not rejected, we will say that the data on which the test is based do not provide sufficient evidence to cause
- If the testing process leads to rejection, we will say that the data at hand are not compatible with the H_O , but are supportive of some other hypothesis & may be designated by H_A (H_A a contradiction statement of H_O)

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Estimation - Confidence Interval Hypothesis testing - p value

The Five-Step practical procedure for Hypothesis Testing (opt.)

- Step 1: Set up H_O, H_A
 - 1. Data: The nature of the data (classification)
 - 2. Assumptions: The normality of the population distribution, equality of variances, independence of samples...
 - 3. Hypotheses: Ho, HA
- Step 2: Define the test statistic
 - 4. Test statistic
 - 5. Distribution of the Test Statistic

Estimation - Confidence Interval

Hypothesis testing - p value

The Five-Step practical procedure for Hypothesis Testing, cont. (opt.)

- Step 3: Define a rejection region: having determined a value for α
 - 6. Decision rule
- Step 4:
 - 7. Calculate the value of the test statistic, and compare it with the acceptance & rejection regions that have already been specified.
 - 8. State our decision: to reject Ho or to fail to reject Ho
- Step 5:
 - 9. Give a conclusion: this statement should be free of statistical jargon & should merely summarize the results of the

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Estimation - Confidence Interval Hypothesis testing - p value

Note

A statistical package helps you only the step 4, but not for the other steps.

Summary

Statistics:

- Descriptive statistics→organize & summarize data
- Inferential statistics →drawing of inferences:
 - Estimation
 - · estimator, confidence interval very helpful as it gives a range of likely values
 - Hypothesis testing
 - o p-value, or "surprise-level" value

Nguyen Thi Tu Van, Nguyen Quang Vinh Basic Statistics

Estimation - Confidence Interval Hypothesis testing - p value Summary

Exercises

- A survey of 100 delivery cases in a population gave us the mean of newborn baby weight is 3,050 grams; 95% confidence interval is of (2,950 - 3,150 grams). Please give your explanation for the results.
- Please give your brief explanations of the p value.
 - 0 ...
 - Ø ...
 - **6** ...