
Learning Epidemiology Basic Concepts in Epidemiology and Clinical Research

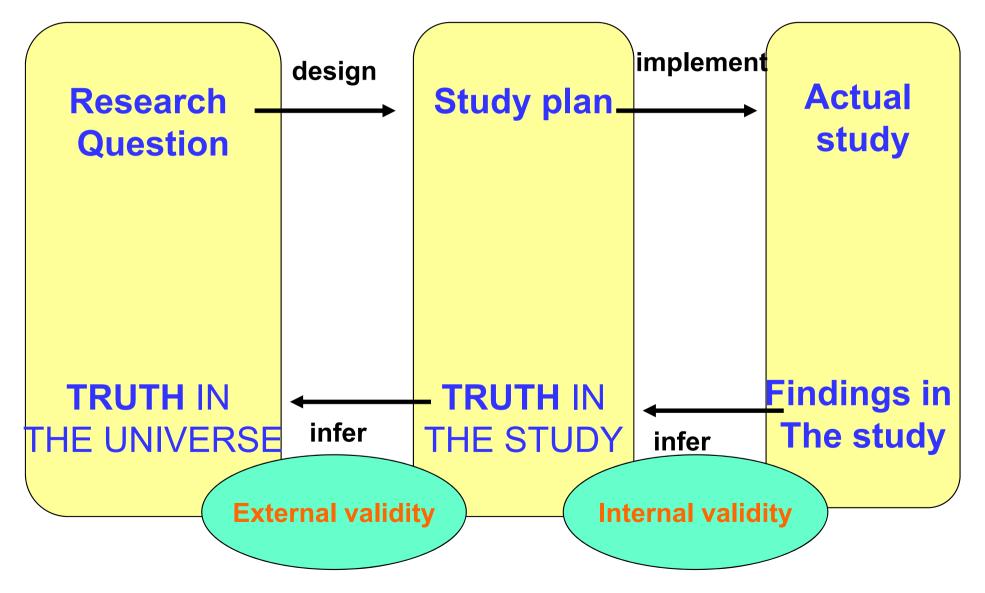
Trần Thế Trung, MD, MSc Department of Endocrinology University of Medicine and Pharmacy, Ho Chi Minh City

Contents

- The purpose of research
- Types of research design
 - Prospective vs. Retrospective
 - Cross-sectional vs. longitudinal study
- Research question
- Variables: barebones of quality research
 - Accuracy vs. Precision

The Physiology of Research

Research: Two viewpoints


(1) Anatomy of research – what it's made of

(the research question, design, subjects, measurements, sample size calculation...)

(2) Physiology of research – how it work.

- Internal validity: the events that happen in the study sample.
- External validity: generalizing these events to people outside the study.
- Threats: errors, random error and systematic error (= bias)

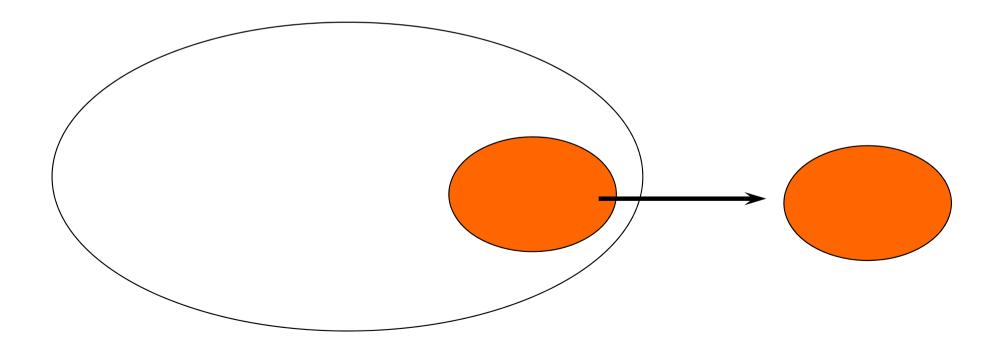
The Physiology of Research

Anatomy of research The Research Question

- The objective of the study
- The uncertainty to resolve
- Must be narrowed (specific)
- Significance:
 - What is known at hand?
 - Why is the research question important?
 - What kind of answers will the study provide?

Anatomy of research The Design

A complex issue


- Observational study >><< Interventional study</p>
- Observational designs:
 - Case report
 - Case-series report
 - Cross-sectional study
 - Diagnostic test. Screening test.
 - Case-control study
 - Cohort study
- Interventional design

Anatomy of research The Design

- Descriptive study >< Analytic study</p>
- Cross-sectional >< Longitudinal</p>
- Retrospective / Prospective / Historical Prospective / Retro-prospective
- Random / Nonrandom
- Blind / Unblind

Anatomy of research Study Subjects

Who ? => The target population (specific)
 How to recruit ? => Sampling

Anatomy of research Variables

Variables = Barebones of quality research

Which variables are needed?

- Predictor variables
- Outcome variables

Anatomy of research Statistical issue

- Hypothesis :
 - Some study (descriptive study) do not require a hypothesis.
 - Analytic studies and experiments : at least one main hypothesis.
- Sample size estimation:
 - Proportion
 - Difference between two means ...

The Physiology of Research

- Designing the study
- Implementing the study
- Drawing causal inference

The Errors of Research

- No study is free of errors.
- The inferences are never perfectly valid.
- GOAL: maximize internal & external validity
- Errors:
 - Design phase
 - Implementation phase
 - Analysis phase

The Errors of Research

- Two type of Errors:
 - Random error = due to chance.
 - Systematic error = bias.

Research Question

Origins of a research question

- Build on experience (his own prior studies, his own works, ... in the field).
- Mastering the published literature in an area of study.
- Senior scientist.

Origins of a research question

- Be alert to new ideas
- A skeptical attitude about prevailing beliefs
- New technologies
- Careful observation of patients

Origins of a research question

- Keep the imagination roaming
- Creativity
- Inspirations:
 - Colleague conversation
 - Brainstorming session
 - Preparing a lecture
 - Sitting and thinking
- Tenacity, until the problem have a resolution that feels comfortable.

A good research question: FINER

Feasible:

- Subjects (adequate number of subjects).
- Technical expertise (adequate).
- Cost in time and money (affordable).
- Scope (manageable, narrow).
- Interesting (to the investigator)
- Novel (confirms, extends, provides new findings)
- Ethical
- Relevant (knowledge, policy, future research, ...)

Developing the research question and study plan

- Write down the research question.
- Write down a brief outline of the study plan.
 - How the subjects will be sampled
 - How the variables will be measured
- \Rightarrow Problems (not FINER) and solutions.
- \Rightarrow Iterative process.

Number of question in a study

- Primary question(s)
- Secondary questions
- => A single primary question is favorable.

Estimate Sample Size: Hypotheses & Underlying Principles

Sample size

- How many subjects to sample?
- Sample size: too small, may fail to answer the research question.
- Too large: more difficult and costly.
- => *Appropriate* number.
- Estimate based on data (often guesses)
- Feasible ? Variables ? Any change?
- => Sample size should be estimated early!

Hypotheses

■ Research question → research hypotheses --→ statistical tests.

Elements of the study involved:

- The sample
- The design
- Predictor variables
- Outcome variables

Hypotheses

- Does any study need a hypotheses?
 Some do not need a hypotheses...
- Some have more than one hypotheses. Ex.
 - Prevalence of DM in CR workers.
 - Comparing the effectiveness of PTU and of Methimazole in treating Grave's disease.

Characteristics of a Good Hypotheses

- Simple (vs. complex)
 - Hyperglycemia -> Nephropathy
 - Hyperglycemia, HT, tobacco -> atherosclerosis, stroke and MI.
- Specific (vs. vague)
 - Exercise -> to lower cholesterol.
- In advance (vs. after-the-fact)

Statistical Principles

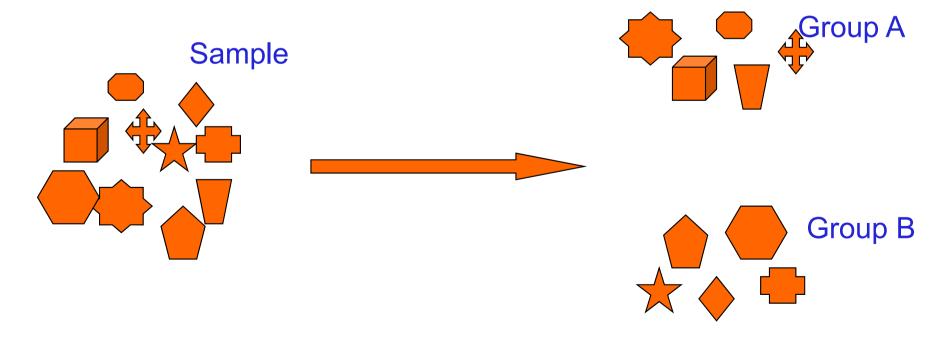
Type I & Type II errors

Truth Result	Null Hypo is true	Null Hypo is wrong
Accept Null	Correct	Type II
Different	Type I	Correct

Sampling Technique

Random sampling

- Simple random sampling
- Cluster (random) sampling
- Stratified (random) sampling
- Systematic (random) sampling


Random sampling vs. Randomization (Randomized Trial)

- Random sampling: to pick subjects from a population that are representative of that population
- Purpose: to estimate the truth in population from the facts in sample

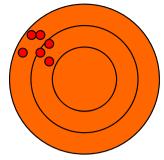
Randomization

 Randomize to two or more groups: to minimize the difference of characteristics between groups (control selection bias)

Planning the Measurements: Precision & Accuracy

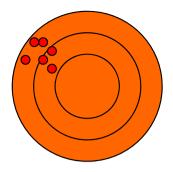
Introduction

- Measurements => describe phenomena => analyzed statistically.
- Internal validity: how well the measurements represent these variables.
- External validity: how well the variables represent the phenomena of interest.


Measurement Scales

- Continuous variables:
 - Continuous variables: weigh, height, length,...
 - Discrete variables: a finite number of intervals, ex. number of cigarettes a day, age,
- Categorical variables:
 - Binominal variables = Dichotomous variables. Ex.
 Sex, death, ...
 - Nominal variables: unordered categories. Ex. blood type.
 - Ordinal variables: ordered categories, unquantifiable intervals. Ex degree of pain, severity of disease.

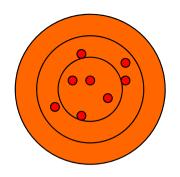
Choosing a Measurement Scale


- A continuous variable can be collapse to a categorical variable (not vice verse).
- Ex. BP (mmHg) (discrete variable)
 => degree 0, I, II, III (ordinal variable)
 => Hypertension or Normal (binominal)

Precision

- Reproducibility, Reliability, Consistency
- More precise => the greater the statistical power (at the same sample size)
- Effected by random error
- Three main sources of error:
 - Observer variability
 - Subject variability
 - Instrument variability

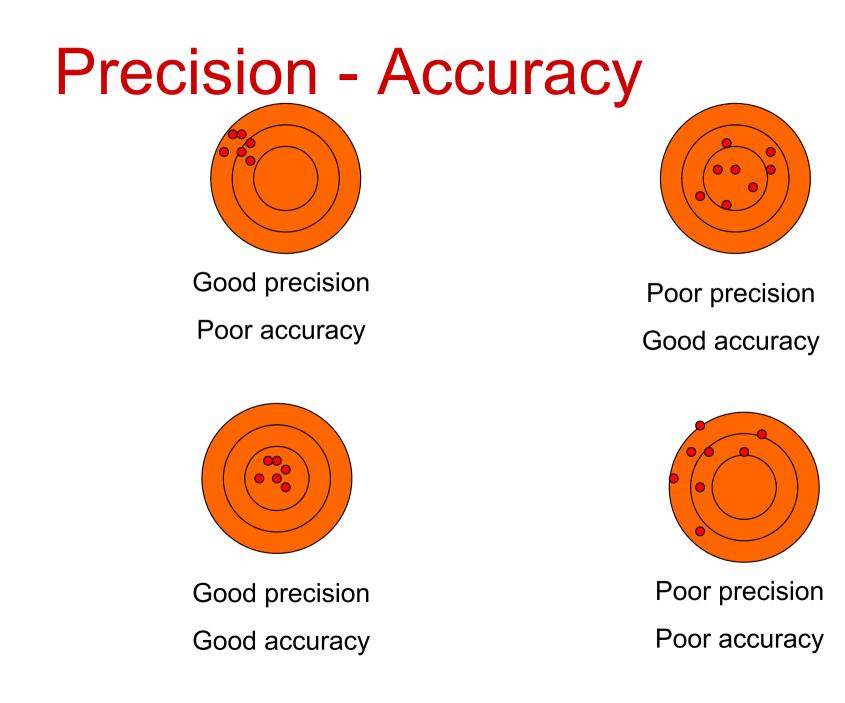
Precision



- Assessing Precision: the consistency of repeated measurements.
 - Within-observer reproducibility
 - Between-observer reproducibility
 - Within-instrument reproducibility
 - Between-instrument reproducibility

Strategies for Enhancing Precision

- 1. Standardizing the measurement methods
 - Operational definitions
 - Operation manual
- 2. Training & certifying the observers
- 3. Refining the instruments
- 4. Automating the instruments
- 5. Repetition
- The decisions based on:
 - Feasibility & cost of the strategy
 - Importance of the variable
 - Magnitude of the potential problem with precision


- The degree it actually represents what it is intended to represent.
- Important influence on the internal & external validity of the study.
- Accuracy =><= Systematic error (bias)</p>
- Three main sources of error:
 - Observer bias
 - Subject bias
 - Instrument bias

Assessing Accuracy

- Comparing to "Gold Standard":
 - Continuous scale: compare means.
 - Categorical scale: sensitivity & specificity.
- No a Gold Standard available:
 - => assess accuracy (validity of measurement)

Strategies for Enhancing Accuracy

- 1. Standardizing the measurement methods
- 2. Training & certifying the observers
- 3. Refining the instruments
- 4. Automating the instruments
- 5. Making unobtrusive measures
- 6. Blinding (subjects, observers)
- 7. Calibrating the instruments
- The decisions based on:
 - Feasibility & cost of the strategy
 - Importance of the variable
 - Magnitude of the potential impact with inaccuracy

Exercise 1

- Objective: to investigate the prevalence of metabolic syndrome in population >= 18 yo.
- Design:
- Target population:
- Sampling: how to recruit objects
- Measurements:
 - Hypertension:
 - Obesity:
 - Lipid profile:
 - Blood glucose

Exercise 2

- Objective: Is there relationship between metabolic syndrome and cardiovascular disease?
- Design:
- Objects:
- Measurements: (list all possible variables)

