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Abstract

We study the continuous limit of the multiple gravitational lensing theory based on the thin lens approximation. Under this assumption, we define an angular 
diameter distance which depends on the light-path as ( and dDR denote the gravitational magnification factor and the Dyer-Roeder distance). We also 
show that the distance satisfies the optical scalar equation in an inhomogeneous universe. Our formalism yields the relation between quantities (convergence, shear, 
and twist) in the gravitational lensing theory and those (rates of expansion, shear and rotation) in the scalar optics theory.
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3. Continuous Limit and Optical Scalar Equations
In eq. (11) we take the limit of zi = zi+1 – zi 0 (i.e., i = i+1 – i 0) to obtain a second differential 

equation of with respect to as follows:
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The prime ’ denotes the derivative with respect to . The solution of this equation with initial conditions (0)
= 0 and ’(0) = yields a map from 0 on the observer plane to (z) on the lens plane at redshift z. Then we 

can define the Jacobian matrix A (= 0) for this map which satisfies an equation similar to eq. (14):
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where = ( x, y) is the shear due to a clump at redshift z given by
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The Jacobian matrix A:
In general, the Jacobian matrix A is given as

where K( (z)) = (Kx( (z)) , Ky( (z))) and G( (z)) = (Gx( (z)), Gy( (z))) denote the cumulative convergence-, 
twist-, and shear-terms, respectively, whose initial conditions are K( (0)) = (1, 0), G( (0))= 0 and K’( (0))
= G’( (0)) = 0.  In terms of the elements of A, therefore we can express the gravitational magnification 
factor as (z) = detA-1 = 1/( K 2-G 2 ), which  depends on the light-path (z) (solution of eq.[14]). 
Hereafter, we restrict ourselves to the case of detA≠ 0.

As mentioned §1, we define an apparent angular diameter distance as follows:

Moreover we define some quantities                              and elements of A as follows:

By using these quantities and a matrix A’A-1 :

we can rewrite eq.(15) as follows
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Eqs. (6), (13) and (21) yield the following equations of           :, and
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The last equation (24) shows that     vanishes. Moreover we found that the right hand side of eq. (22) can be 
regarded as the Ricci term, . The right hand side of eq. (23) is also rewritten as
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where = x-i y, = x-i x. Eq. (25) slightly differs from the Weyl term obtained in the perturbation theory 
of the general relativity. The difference between them comes from the thin lens approximation adopted in this 
presentation. Then we can regard eq. (25) as the Weyl term as long as the  approximation is valid.  
Finally we have obtained the equations of                    :, and

which we can regard as the optical scalar equations (1) under the thin lens approximation.

4. Conclusions
We studied the continuous limit of the multiple gravitational lensing theory under the thin lens 

approximation. In this limit, we found that                     constructed from elements of the Jacobian matrix can 
be regarded as the expansion-, shear- and rotation rates in the scalar optics theory. Since satisfies the 
optical scalar equation in a general space, then, we can adopt it as the angular diameter distance to a specific 
object.
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1. Introduction

In a Fiedmann-Lemaître universe model (FL model),  the angular diameter distance from an 
observer to a source at a redshift z is given by the Mattig formula:
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where                                                           and 0 & 0 are the present values of the density 
parameter and of the cosmological constant. dFL satisfies the first equation of  (1)  as follows:

3 2

0 0 0 01 1 , 1,Y z z K z K

2
5

FL 0 FL2

3
0; 1 0; 0.

2
d d z z d z
d

In a general space, the ray-bundle from a source obeys the optical scalar equations (Sachs 1961):

where , and denote the expansion-, shear-, rotation-rate, and is the affine parameter of  the null 
geodesic.  In eq. (1) and are the Ricci term and the Weyl term, respectively. The expansion rate is 
expressed in terms of the cross-sectional area or  the angular diameter distance D:
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In this model, the shear-rate automatically vanishes. 

Then the first equation of (1) is written as:
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The Universe is, on average, described by an FL model, but locally inhomogeneous. The clumpy 
model may be able to be adopted, where it is assumed that the matter density with fraction      of the mean 
density of the universe is smoothly distributed and the rest matters are concentrated in clumps. Under this 
assumption the angular diameter distance DDR(0;z) is given by the Dyer-Roeder distance (Dyer & Roeder 
1972,1973) if the ray-bundle propagates in an evacuate tube away from all the clumps, i.e. “the shear free 
assumption 0”. Then DDR=(c/H0)dDR satisfies the following equation:
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The effect of clumps?

Inhomogeneous universe

Homogeneous universe

The light-ray passing near/through a clump is gravitationally lensed. In this case, the observed flux  fobs.

is magnified by factor (the gravitational magnification factor).
gravitationally
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In a case of >1, the source of the light-ray is observed as a nearer object. Then the apparent angular 
diameter distance       is written as                      . 1 2

DRd dd

2. Multiple Gravitational Lens Effect
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The light-ray propagates in an inhomogeneous universe. Each clump intervening between the source and 
us may more or less affect on the light-ray. Hence we must consider the multiple gravitational scattering of 
the light-ray. Here we investigate the multiple gravitational scattering of the light-ray by taking into account 
the multiple gravitational lensing.

We assume that there are N lenses which are randomly distributed at redshift zi (0 z1 z2 <… zN)
between the source at redshift zS(=zN+1) and an observer. The origin of each lens plane is located on the 
point intersected with the line of sight (see Figure 1). The multiple lens equations is given by

(8)

where i and S are the angular 
positions of the light ray on the i-th
lens plane and of the source plane,

i and dDR(zi;zk) denote the deflection 
angle on the i-th lens plane and the 
Dyer-Roeder distance from the i-th
lens plane to the k-th lens plane.

According to Schneider, Ehlers & 
Falco (1992), we can define a useful 
function, i.e. (z) function as follows:

This function relates to the Dyer-Reoder distance as

By substituting this relation (10) to eq. (8) we can obtain the following difference equations

where

is a deflection angle on the i-th lens plane due to a clump with mass density
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Now we can take a limit of                               with   fixed!
(Go  “§3. Continuous limit”!)
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* This presentation is based on Yoshida, Nakamura & Omote (2004).
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Now we have a problem whether the distance really satisfies the optical 
scalar equations for the light-ray passing near/through clumps or not.
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Figure 1. Geometry of multiple gravitational lensing system
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