Abstract

We study the continuous limit of the multiple gravitational lensing theory based on the thin lens approximation. Under this assumption, we define an angular
diameter distance which depends on the light-path as d = ,Ll_l/deR(,U and d,, denote the gravitational magnification factor and the Dyer-Roeder distance). We also
show that the distance satisfies the optical scalar equation in an inhomogeneous universe. Our formalism yields the relation between quantities (convergence, shear,
and twist) in the gravitational lensing theory and those (rates of expansion, shear and rotation) in the scalar optics theory.
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optical scalar equations

1. Introduction

In a general space, the ray-bundle from a source obeys the optical scalar equations (Sachs 1961):

i@)+@2+|2|2 R, L541205=F, and L 01200=0, (1)
dr dr dr

where 0O, 2, and w denote the expansion-, shear-, rotation-rate, and 7 1s the affine parameter of the null
geodesic. In eq. (1) R and F are the Ricci term and the Weyl term, respectively. The expansion rate is

expressed in terms of the cross-sectional area A or the angular diameter distance D:
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Then the first equation of (1) 1s written as:
d2
— -D+(jg -R)D=0. 3)

Homogeneous universe

In a Fiedmann-Lemaitre universe model (FL model), the angular diameter distance from an
observer to a source at a redshift zis given by the Mattig formula:

D, (0;2) = H_dFL(O Z)= J(_C/(T+)z) sin{\/R LZYO(IZZ’,)}, 4)

where Y(z \/Q 1+2) +4,-K(1+2), K=0,+4 -1, and Q, & 4, are the present values of the density
parameter and of the cosmologlcal constant. dy; satlsﬁes the ﬁrst equation of (1) as follows:

d’ 3

d_z_zdFL (O; Z)+EQO (1+ Z)5 d., (O; Z)=O. (5)

In this model, the shear-rate automatically vanishes.

Inhomogeneous universe

The Universe is, on average, described by an FL model, but locally inhomogeneous. The clumpy

model may be able to be adopted, where it is assumed that the matter density with fraction @ of the mean
density of the universe 1s smoothly distributed and the rest matters are concentrated in clumps. Under this
assumption the angular diameter distance D,(0;2) 1s given by the Dyer-Roeder distance (Dyer & Roeder

1972,1973) if the ray-bundle propagates in an evacuate tube away from all the clumps, 1.e. “the shear free
assumption X = (0”. Then Dy=(¢/H,)dpy satisfies the following equation:

2
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The effect of clumps?
The light-ray passing near/through a clump is gravitationally lensed. In this case, the observed flux f
1s magnified by factor u (the gravitational magnification factor).
L gravitationally L

4z (1+ 2)4(0/ H )2 d2, (0;2) lensed = “obs 4z (1+ 2)4(C/H )2 d2 (0;2) (7)

In a case of ¢ >1, the source of the light-ray 1s observed as a nearer object. Then the apparent angular
diameter d1stance d is written as d = 1/ ° de .
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Now we have a problem whether the distance really satisfies the optical

scalar equations for the light-ray passing near/through clumps or not.

2. Multiple Gravitational Lens Effect

The light-ray propagates in an inhomogeneous universe. Each clump intervening between the source and
us may more or less affect on the light-ray. Hence we must consider the multiple gravitational scattering of
the light-ray. Here we investigate the multiple gravitational scattering of the light-ray by taking into account
the multiple gravitational lensing.

We assume that there are N lenses which are randomly distributed at redshift z (0 <z, <z, <...< 7))
between the source at redshift z,(=z, ,) and an observer. The origin of each lens plane is located on the
point intersected with the line of sight (see Figure 1). The multiple lens equations 1s given by

DR Zk Zs) < dDR(Zi;Zk)
0.), 6, =0 — a; Hi , g
kZ: DR Zs) ( k) ‘ 1 ;dDR(O;Zk) ( ) &

where @ and 6, are the angular / ) > X =
positions of the light ray on the i-th D,, -

lens plane and of the source plane, e 20/ 12 -_R N Dy 2 o
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function, 1.e.(2) function as follows: .
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Figure 1. Geometry of multiple gravitational lensing system
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This function relates to the Dyer-Reoder distance as
dDR(Zi e ) = (1"' Z )dDR(O; Z )dDR(O; Z )(Z. — X ) (10)

By substituting this relation (10) to eq. (8) we can obtain the following difference equations

0..-0 0-0_
= =—(1+2)d(0;Z )a (6 ),
Ai = Ain Aia— A ( ZI) DR( ZI) ( ) Y
where 4G d (O'Zi)AZi 0 —
a,(0,)= = H} d*05, p(Dpr(0;2) 0, Z(2))— il - (12)

Ho (1+2)Y(z) 6 -9
is a deflection angle on the 1-th lens plane due to a clump with mass density
5,9 (Dpr(0;2)9,Z(2)) = p(Dpe(0;2) 90, Z(2))-ap(2) (2 0). (13)
Now we can take a limit of Az (=7, —7)— 0 with p, fixed!
(Go “8 3. Continuous limit”!)

%k This presentation is based on Yoshida, Nakamura & Omote (2004).

gravitational lensing

3. Continuous Limit and Optical Scalar Equations

In eq. (11) we take the limitof Az =z, -z — 0 (1.e., Ay, = x,; — x;— 0) to obtain a second differential

equation of & Wzlth respect to y as follows:
d-é " . 2 . 0 — [
i, =" = _H_g(1+ 2)” di(0; 2) j d’p S, p(Dpe(0;2)@.Z) o of : (14)
The prime ’ denotes the derivative with respect to y. The solution of this equation with initial conditions &0)
= @,and 67(0) = 0 yields a map from 6, on the observer plane to &z) on the lens plane at redshift z. Then we

can define the Jacobian matrix A (=068/08,) for this map which satisfies an equation similar to eq. (14):

N
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dz R AR < )

where y= (%, %) 1s the shear due to a clump at redshiftZgiven by ( y )2 _(9 0 )2
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The Jacobian matrix A:

In general, the Jacobian matrix A is given as

K.+G K +G
A= . & / y, (17)
-K,+G, K,-G,

where K(x(2)) = (Ky(x(2)) , Ky (x(2))) and G(x(z)) = (G,(x(2)), G,(%(2))) denote the cumulative convergence-,

twist-, and shear-terms, respectively, whose initial conditions are K(y(0)) = (1, 0), G(¢(0))=0 and K’ (%(0))
=G’ (¢(0)) = 0. In terms of the elements of A, therefore we can express the gravitational magnification
factor as 1(&z)) = detA-! =1/( K?-G ?), which depends on the light-path () (solution of eq.[14]).
Hereafter, we restrict ourselves to the case of detA# 0.

As mentioned 8 1, we define an apparent angular diameter distance as follows:

d(0(2)]0;2) = 1*(0(2)) dpe (0; 2). (18)
Moreover we define some quantities @, £ and @ in terms of d and elements of A as follows:
- ~ - K.G —K!G K.K!+G,G/
@zilnd(e(z)\o;z),Zz—(éab+i5ab)ﬂ( L b), @ =— 20l . N b). (19)
dr dpx(0; 2) do:(0; 2)
By using these quantities and a matrix A" A-! :
©®-0,, +RelZ m|2]+ @
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m[Z]-4  ©-0,, —RelS] dr
we can rewrite eq.(15) as follows
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Egs. (6), (13) and (21) yield the following equations of ©, ¥ and & :
di®+®2+lilz—cb2 = 4”G(H z)" p(Dye (0:2)6.Z(2)). (22)
4 0
d  .~¢ 2 :
—2+20X=(1+2 +1y, ), 23
i (1+2) (7 +iry) (23)
— H+200=0. (24)
dr

The last equation (24) shows that @ vanishes. Moreover we found that the right hand side of eq. (22) can be
regarded as the Ricci term, R . The right hand side of eq. (23) 1s also rewritten as

O0-p( Dy, (0; ,Z
(1+ 2)2(7X+i7/y):4—(§(1+ z)2 H}d%o “'0( on Z)¢2 (Z)), (25)
where 0= 6,-16,, ¢" = p,-1¢,. Eq. (25) slightly differs from the Weyl term obtained in the perturbation theory

of the general relativity. The difference between them comes from the thin lens approximation adopted 1n this
presentation. Then we can regard eq. (25) as the Weyl term F as long as the approximation is valid.

Finally we have obtained the equations of ®, 3 and @

d ~ ~, |ep d - _~- d .~
— O+ 45 =R, —54205=F and —5+205=0,
dr dr dr

which we can regard as the optical scalar equations (1) under the thin lens approximation.

4. Conclusions

We studied the continuous limit of the multiple gravitational lensing theory under the thin lens
approximation. In this limit, we found that ©, ¥ and & constructed from elements of the Jacobian matrix can
be regarded as the expansion-, shear- and rotation rates in the scalar optics theory. Since d satisfies the
optical scalar equation in a general space, then, we can adopt it as the angular diameter distance to a specific

object.
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