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Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the 
pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. He-
matopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations ; additional 
mutation provokes further malignant transformation, leading to AML onset. Although genetic al-
terations are defined as the main cause of malignant transformation, non-genetic factors are also 
involved in disease progression. In this review, we focus on a non-histone chromatin protein, high 
mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X 
(MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in poly-
comb components, and provokes expansion of preleukemic clones through stem cell signature dis-
ruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX 
induces leukemic transformation from preleukemia via suppression of p53 and p53-independent acti-
vation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted 
for leukemia prevention therapy.
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Introduction

Acute myeloid leukemia (AML) includes a di-
verse spectrum of neoplasms with a variety of ge-
netic abnormalities and variable responses to treat-
ment. AML arises from hematopoietic cells 
harboring chromosomal translocations and/or somat-
ic/germline mutations in recurrently affected 
genes1-4). Genetic screening of healthy individuals 
has shown that about 10% of non-diseased adults 
over 65 years old have leukemia-related mutations 
in hematopoietic cells, manifesting as clonal hemato-
poiesis (CH)5-7). In addition, myelodysplastic syn-
dromes (MDS) and myeloproliferative neoplasms 
(MPN) are well-characterized “preleukemic” my-
eloid diseases with variable degrees of severi-
ty. Somatic mutations are uniquely distributed in 
these diseases but show significant overlap with 

those in AML8-10). The onset of AML from preleu-
kemia is more frequent than in age-matched individ-
uals without hematopoietic cell mutations. The 
transformation rate can be predicted from risk fac-
tors, such as the type of mutated genes, number of 
mutations, variant allele frequency (VAF) of mutated 
genes, and loss of heterogeneity (LOH) in affected 
genes11-13).

In comparison with genetic alterations, the ef-
fect of non-genetic factors such as the transcriptome 
during preleukemic to leukemic transition has not 
been well elucidated. Before the next-generation 
sequencing (NGS) era, gene expression profiling by 
microarray was an attractive tool to classify normal-
karyotype AML, in which mutation status was large-
ly unknown14-16). Studies with NGS have revealed 
many recurrent mutations in AML, including nor-
mal-karyotype AML. The classification of AML is 
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being redefined by mutations in combination with 
karyotypes rather than gene expression profiles ob-
tained by microarray. Although gene expression 
profiles in bulk AML samples are now less impor-
tant than previously, single-cell RNA sequencing 
(scRNAseq) techniques reveal that gene expression 
status – especially in the hematopoietic stem/pro-
genitor cell (HSPC) fraction – is still important to 
clarify mechanisms of how normal hematopoiesis 
can be disrupted and give rise to leukemic transfor-
mation17,18). Abnormal expression of various genes 
could be the result of mutations in genes such as 
epigenetic modifiers, splicing factors, kinases, and 
transcription factors (TFs)19) ; however, there re-
main many unsolved mechanisms of abnormal tran-
scriptome processing in leukemogenesis.

Expression changes in TFs are the best-studied 
elements in hematopoiesis and leukemogene-
sis. Especially, frequent dysregulation of CEB-
PA20,21), GATA1/222,23), HOX families24), PU.125), and 
RUNX126) by both mutational and non-mutational 
mechanisms have been reported in myeloid malig-
nancies. The transcriptional regulation of TFs is 
complicated, due to their reciprocal actions, tempo-
rospatial regulations, and stochasticity in expression 
levels27-30). Single-molecule fluorescence in situ 
hybridization (SmFISH)31,32) together with scRNAseq 
has been utilized to analyze these intricate mecha-
nisms, and ongoing projects are expected to shed 
more light in this field33).

However, regarding gene expression changes in 
myeloid malignancies as candidate therapeutic tar-
gets, TFs may be difficult to target because most of 
them are essential for physiological cellular activi-
ties. Therefore, focusing on non-TFs that are 
overexpressed in myeloid malignancies could be a 
better choice to generate new target therapy. Es-
pecially, non-TFs which broadly regulate other 
genes without transcription activity and are highly 
expressed in myeloid malignancies – while indis-
pensable to normal hematopoiesis – could be good 
candidate targets. The role of overexpression of 
non-TFs in leukemogenesis might be simpler than 
that of TFs, but has been less studied thus far. In 
this review, we focus on the role of two non-TF pro-
teins, HMGA2 and MDMX, in the development and 
progression of myeloid malignancies. Both 
HMGA2 and MDMX are overexpressed at the he-
matopoietic stem cell level during the transition 
from moderate or asymptomatic hematopoietic con-
ditions (e.g., CH and low-risk MDS, MPN, and 
MDS/MPN overlap neoplasms) to fatal myeloid ma-
l ignancies  (e .g . ,  h igh- r isk MDS and MPN, 

AML). We discuss how these proteins are overex-
pressed in HSPCs and provoke disease progression, 
and how can we target them as tumor stem cell-di-
rected therapy.

1. The role of HMGA2 in myeloid  
malignancies

The canonical function of HMGA2

  The high mobility group (HMG) proteins are 
non-histone chromatin-associated nuclear proteins 
that regulate gene expression and chromatin struc-
ture34,35). Among three HMG superfamily members 
(HMGA, HMGB, and HMGN), the HMGA family 
consists of two members, HMGA1 and HMGA2.    
The HMGA family mainly functions to bind AT-rich 
regions in the minor groove of DNA36), change chro-
matin structures, and help DNA binding of TFs in 
cooperation with protein-protein interactions in-
duced by the acid domain of HMGA237-40). HMGA2 
is widely expressed in normal tissues during devel-
opment, with expression levels decreasing in late 
development to adulthood41,42). Except for the de-
velopment period, the role of HMGA2 in normal tis-
sues is limited to the maintenance of stem cells and 
mesenchymal cells43-47). However, HMGA2 is re-

expressed in various cancers and is associated with 
the progression of the disease48,49). 

HMGA2 in myeloid malignancies

  Numerous mechanisms of overexpression, 
roles in tumor progression, and target genes of 
HMGA2 have been reported in various cancers, and 
appear to be context-dependent48,49). In this review, 
we focus on the overexpression of HMGA2 in my-
eloid malignancies. A schematic cause-and-effect 
diagram of HMGA2 overexpression in myeloid ma-
lignancies is presented in Figure 1.

Overexpression of HMGA2 transcripts is re-
ported in the whole blood and hematopoietic stem 
cell fractions of patients with MPNs, and the fre-
quency of HMGA2 overexpression in patients with 
primary myelofibrosis (PMF), which is the most se-
vere subtype of MPN, reaches nearly 100%50-55). In 
addition, overexpression of HMGA2 has been re-
ported in some patients with myeloid malignancies 
such as chronic myeloid leukemia (CML)56-58), 
MDS59), AML56,60), as well as paroxysmal nocturnal 
hemoglobinuria (PNH)61,62), which is a benign but ac-
quired clonal hematologic disease.

HMGA2 has a long 3’UTR, and it is targeted by 
various microRNAs (miRNAs)49,63). Disruption of 
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miRNAs is implicated in the development and pro-
gression of hematopoietic malignancies as well as 
other cancers64,65). Among these miRNAs, family 
members of miR-Let7 are the most powerful degrad-
ers of HMGA2, as there are eight predicted miR-

Let7 target sequences on the 3’UTR of HMGA266,67).    
Reduced expression of miR-Let7 and other microR-
NAs targeting HMGA2, or deletion of the 3’UTR of 
HMGA2, which includes target sequences of mi-
croRNAs, are implicated in overexpression of 
HMGA2 in hematological diseases53,54,62,68-75).

Also, LIN28B, the negative regulator of miR-

Let7, is frequently overexpressed in progressive 
cancers76), and activation of the LIN28B-Let7-HM-
GA2 axis contributes to the progression of various 
cancers77). The LIN28B-Let7-HMGA2 axis is also 
an essential regulator in the development of hema-
topoiesis but is inactivated in adulthood78,79). Reac-
tivation of this pathway in HSPC could be the cause 
of malignant transformation, but this requires fur-
ther evidence about any relationships between 
LIN28B and myeloid malignancies.

Moreover, abnormal splicing contributes to 
overexpression of HMGA2 in patients without ge-
netic amplification or translocation in HMGA2 cod-
ing lesion53,59,61), indicating that mutations or dys-
function of splicing factors may be associated with 
dysregulation of HMGA2 expression.

In addition to the mechanisms mentioned 
above, mutations in epigenetic modulators are asso-

ciated with overexpression of HMGA2 in patients 
with MPNs55). MPNs are derived from HSPCs with 
constitutive activation of JAK-STAT signaling, which 
is provoked by driver mutations such as JAK2-

V617F80,81), MPL-W515L/K82), and CALR-exon9-in-
dels83,84). EZH2 mutation is one of the most fre-
quent co-occurring mutations in JAK2-mutated 
MPNs and is associated with poor prognosis85,86).    
EZH2 is the catalytic component of the polycomb 
repressive complex 2 (PRC2), and loss of EZH2 is 
associated with overexpression of HMGA287,88).

Murine models with HMGA2 overexpression

To clarify how HMGA2 contributes to disease 
progression, we and other groups generated several 
murine models that express external Hmga2 trans-
genes89,90) or re-express endogenous HMGA2 by de-
letion of Ezh287,88,91). A model of transgenic mice 
with a truncated murine Hmga2 (Hmga2-Tg, also 
described as ΔHmga2) shows about 3- to 5-fold in-
creased expression of HMGA2 compared to wild-

type (WT) controls in hematopoietic tissues. This 
model shows moderate elevation of white blood cell 
(WBC), red blood cell (RBC), and platelet (PLT) 
counts, increased number and repopulating capacity 
of HSPCs as well as increased megakaryopoie-
sis ; however, it does not develop lethal myeloid 
disease89). Hmga2 conditional knock-in mice re-
ported from elsewhere were phenotypically similar 
to those with Hmga2-Tg90). Of note, another model 

Fig. 1. The implication of HMGA2 on myeloid malignancies.
  Schematic cause-and-effect diagram of HMGA2 overexpression in myeloid malignancies. In normal hematopoi-

etic cells, expression of HMGA2 is repressed mainly by PRC2 via H3K27 tri-methylation of its promoter and/or 
miR-Let7-mediated silencing. Those suppressors are altered in myeloid malignancies leading to overexpres-
sion of HMGA2 followed by upregulation of its target genes. (Me3 : tri-methylation, PRC2 : polycomb repres-
sive complex 2, TFs : transcription factors, UTR : untranslated lesion)
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of HMGA2-Tg mice that overexpresses human 
HMGA2 has been reported to develop very aggres-
sive acute lymphoid leukemia92). This might reflect 
the “context-dependent” oncogenic activity of 
HMGA2. Differences in species, promotors, and 
expression levels may lead to differences in which 
hematopoietic lineage would be the most affected.

Endogenous overexpression of HMGA2 by de-
letion of the PRC2 component Ezh2 has been re-
ported in MPN models, which harbor the Jak2-

V617F mutation. These mice developed lethal 
myelofibrosis, and RNAseq/ChIPseq of HSPC 
showed elevated expression of Hmga2 provoked by 
decreased H3K27 trimethylation in a promotor le-
sion87,88). To confirm that HMGA2 is responsible 
for disease progression in JAK2-V617F hematopoie-
sis, we crossed JAK2V617F-Tg mice93) with Hmga2-

Tg89) (JAK2VF/Hmga2). JAK2VF/Hmga2 mice re-
produced the phenotypes of JAK2VF/Ezh2-/- mice 
and died with severe leukocytosis. Proliferated 
leukocytes were mature, and did not represent 
AML. Myelofibrosis was observed, but mice with 
JAK2VF alone also presented with severe myelofi-
brosis, so we could not determine whether overex-
pression of HMGA2 promotes fibrosis. HSPC of 
JAK2VF/Hmga2 mice showed hematopoietic repopu-
lating capacity after 3 iterations of competitive serial 
bone marrow transplantation, while JAK2VF alone 
was outcompeted by a WT competitor. Also, ab-
normal blood cell counts in JAK2VF/Ezh2-/- mice 
were partially recovered by a heterogenous knock-
out of Hmga2. We identified several oncogenes, 
Lmo1, Gcat, and Prss16 as the upregulated genes in 
HSPC of both JAK2VF/Hmga2 and JAK2VF/Ezh2-/-.    
However, upregulation of myelofibrosis-related 
pathways such as TGFβ signaling was observed only 
in JAK2VF/Ezh2-/-. Therefore, we concluded that 
HMGA2 contributes to the expansion of a JAK2-

V617F mutated clone, and fibrosis is provoked by 
other targets of EZH255). However, this last point 
is still controversial as other groups showed that 
overexpression of HMGA2 upregulates TGFβ sig-
naling, which plays a critical role in bone marrow fi-
brosis94,95), via overexpression of Tgfbr296). They 
employed another Jak2-V617F mouse, and overex-
pressed Hmga2 by lentivirus. Collectively, al-
though its role in the progression of bone marrow fi-
brosis is controversial, we can conclude that 
HMGA2 enhances the fitness of JAK2-mutated 
clones, leading to disease progression (Figure 1).

Recently, HMGA1 – the sister protein of 
HMGA2 – has been reported to contribute to the 
progression of MPN. The investigators’ murine 

model revealed that heterogeneous loss of Hmga1 
markedly improved myelofibrosis of JAK2-V617F-

Tg mice97). They reported that targets of HMGA1 
are proliferation pathways and GATA2, which is dis-
tinct from targets of HMGA2. This may suggest 
close collaboration between these sister genes in 
the pathogenesis of MPN and warrants further 
study.

Functional analysis of the CALR mutant, which 
is the second most frequent driver mutation in 
MPNs, has been insufficient, especially regarding its 
collaboration with other mutations. Recently, we 
generated Calr-del10 mice that lack 10 base pairs in 
exon 9 of Calr, mimicking type2-like CALR muta-
tion in MPN patients ; these mice presented mild 
phenotypes of MPN98). Our preliminary data have 
shown that addition of Hmga2-Tg to Calr-del10 
evokes progression of MPN phenotypes but not my-
elofibrosis or leukemic transformation, while dele-
tion of Ezh2 can provoke myelofibrosis or leukemic 
transformation after a long latency. From these ob-
servations, we speculate that HMGA2 just contrib-
utes to clonal expansion of MPN, and other targets 
of EZH2 contribute to myelofibrosis and clonal ex-
pansion, although this warrants further study.

Implications of HMGA2 in AML

  Although HMGA2 is overexpressed in some of 
the patients with myeloid malignancies other than 
MPN56-60), the role of HMGA2 in these diseases re-
mains uncertain. Our model showed that HMGA2 
expands JAK2-mutated clones and provokes lethal 
MPN, however, JAK2VF/Hmga2 mice never develop 
overt AML55). A recent report showed that forced 
expression of Hmga2 in Tet2-deficient HSPC acti-
vates IGF2BP2 and its targets, and transplantation 
recipients of these cells develop lethal MDS but not 
overt AML99). These findings suggest that overex-
pression of HMGA2 is insufficient for a complete 
transformation to AML. HMAG2 may be associat-
ed with a leukemia stem cell (LSC) signature rather 
than a leukemic transformation. AML cells with 
high HMGA2 expression have been reported to 
present more immature surface markers and higher 
LSC scores compared to HMGA2-low AML cells100).    
Immature phenotype should be associated with 
worse prognosis, therefore inhibition of HMGA2 
may improve the treatment of AML.

HMGA2 inhibitors

  So far, no clinical-grade HMGA2 inhibitor is 
available. Netropsin is a pan-AT hook-binding drug 
that has been used experimentally101), but cannot be 
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administered to humans. Ciclopirox and tetrac are 
reported as direct inhibitors of HMGA2102,103).    
Small molecule inhibitors of LIN28 have also been 
tested, and are expected to induce an abundance of 
Mir-Let7, leading to degradation of HMGA2104).    
Further study is needed to develop selective 
HMGA2 inhibitors for human therapy.

Summary

 In summary, HMGA2 is inadequately re-ex-
pressed by genetic amplification, loss of regulatory 
lesion of 3’UTR, alteration of the LIN28B-Let7-

HMGA2 axis, loss-of-function mutation in EZH2, or 
disruption of splicing (Figure 1). Overexpression 
of HMGA2 contributes to the expansion of disease 
clones harboring driver mutations of myeloid malig-
nancies by activating genes involved in stem cell 
signatures.

2. The role of MDMX in myeloid  
malignancies

Overview of the functions of MDMX

 Murine double minute X (MDMX, also known 
as MDM4 and HDM4) and its homolog murine dou-
ble minute 2 (MDM2, also known as HDM2) physio-
logically inhibit p53, which is overexpressed in vari-
ous cancers, including myeloid malignancies105).    
However, overexpression of MDMX has an onco-
genic role in p53-null and mutated backgrounds, 
suggesting functionality independent of p53106,107).    
Several p53-independent functions such as protea-
somal degradation of p21108), induction of genomic 
instability109), and stabilization of TOP2A110) have 
been reported. Also, we reported a novel p53-in-
dependent function of MDMX that activates WNT/
β-catenin signaling via a reduced abundance of 
β-catenin degrader CK1α111). For the details of p53 
dependent and independent functions of MDMX and 
its role in hematopoiesis, please refer to our newest 
review112). In this review, we focus on the role of 
MDMX in myeloid malignancies.

The mechanism of MDMX overexpression in myeloid 
malignancies

MDMX is overexpressed in bulk AML samples 
and LSCs, in contrast to other cancer samples and 
normal HSPCs113-115). Strong associations between 
expression levels of MDMX and mutation status 
have not been reported, except for relatively higher 
expression in AML with a complex karyotype116).

The mechanism behind MDMX overexpression 

is largely unknown. Copy number alteration of 
MDMX has been reported in some cancers, but gene 
amplification is not the main cause of MDMX overex-
pression in myeloid malignancies117-119). Instead, the 
splicing balance between the oncogenic transcription 
variant, full-length MDMX (MDMX-FL), and the 
non-oncogenic transcription variant, short MDMX 
(MDMX-S), is frequently altered120). The skipping of 
exon 6 (exon 7 in murine MDMX) produces the MD-
MX-S transcript, which is unstable compared to MD-
MX-FL because the termination codon of MDMX-S 
is targeted by antisense-mediated decay121,122).    Thus, 
expression of MDMX-S results in reduced protein 
expression of MDMX123).    Inversely, the inclusion of 
exon 6 results in the expression of stable MDMX-FL 
transcripts, resulting in abundant MDMX pro-
tein. Exon inclusion/skipping is controlled by splic-
ing factor SRSF families, arginine methyltransferase 
PRMT5, and another RNA-binding protein, 
Zmat3. Therefore, dysregulation of these factors 
may be associated with MDMX overexpres-
sion120,124,125), although this warrants further investiga-
tion. Moreover, there is a feedback loop between 
p53 and MDMX expression. The constitutive pro-
moter of MDMX located upstream of exon 1 (P1) is 
targeted by various TFs other than p53, while the 
second promoter located in intron 1 (P2) is p53-re-
sponsive. P2 promoter is active in specific condi-
tions such as stress response, and the transcripts 
from P2 cooperate with MDM2 to degrade p53 more 
efficiently than transcripts from P1126).

Murine models show a crucial role for MDMX in  
leukemogenesis

Because MDMX is overexpressed in the vast 
majority of myeloid malignancies, we have investi-
gated whether MDMX overexpression directly in-
duces the transformation of preleukemia to AML111).    
Although MDMX-overexpressing mice (Mdmx-

Tg)106,127) develop no myeloid disorders, HSCs of 
Mdmx-Tg mice present increased self-renewal and 
competitiveness over WT HSCs. RNA-sequencing 
and functional assays of HSCs reveal that activation 
of WNT/β-catenin signaling – rather than downregu-
lation of p53 targets – was the main cause of prolif-
erative HSCs in Mdmx-Tg mice.    These results 
were reproduced in comparisons of Trp53-/- versus 
Trp53-/- with Mdmx-Tg, suggesting that upregula-
tion of WNT/β-catenin signaling in MDMX-overex-
pressed mice is p53 independent.

Moreover, we crossbred Mdmx-Tg mice with 
preleukemic murine models, such as PU.1 knock-

down mice (URE-/-)128), Tet2-/- mice, Tet2-/+ mice129), 
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and Flt3ITD/WT mice130). These mice develop preleu-
kemic diseases of variable severity, but do not devel-
op overt AML. The addition of Mdmx-Tg provoked 
overt AML in all these models. This provides evi-
dence that overexpression of MDMX induces leuke-
mic transformation. Unlike the comparison of WT 
and Mdmx-Tg, both downregulation of p53 targets 
and upregulation of WNT/β-catenin targets were de-
tected in HSCs of URE-/- with Mdmx-Tg mice com-
pared to URE-/- alone. Therefore, MDMX is pre-
sumed to induce leukemic transformation via both 
inhibition of p53 and upregulation of WNT/
β-catenin. Because genetic alteration induces p53 
activation131-137), we speculate that preleukemic 
HSCs with MDMX overexpression are more depen-
dent on p53 inhibition to survive, compared to HSCs 
with MDMX overexpression alone.

Molecular mechanism of p53-independent activation 
of WNT/β-catenin signaling by MDMX overexpression

 To clarify the mechanism behind WNT/
β-catenin activation, we screened proteins that in-
teract with MDMX utilizing liquid chromatography-

tandem mass spectroscopy (LC-MS/MS). Except 
for housekeeping proteins, CK1α (encoded by CSN-
K1a1) was the top binding partner111). The binding 
of CK1α and MDMX has been reported in non-he-
matopoietic contexts138). CK1α binds with MD-
MX’s acidic domain, and releases intramolecular in-
hibition of MDMX’s p53-binding domain, resulting 
in the binding of p53 and MDMX139,140). CK1α also 
binds with β-catenin, phosphorylates S45, and re-
cruits the GSK3β/Axin/APC complex. GSK3β fur-
ther phosphorylates β-catenin, triggering protease-

mediated degradation of β-catenin141).
According to these findings mentioned above, 

we hypothesized that overexpressed MDMX occu-
pies CK1α, causing a reduced abundance of CK1α, 
resulting in the accumulation of β-catenin. We con-
firmed that MDMX overexpression induces in-
creased β-catenin protein, and both inhibiter for 
β-catenin and exogenous overexpression of CK1α 
ameliorated proliferative phenotype of MDMX-

overexpressing HSCs, while WT HSCs were not af-
fected by these procedures111). Constitutive activa-
t ion  o f  WNT/β- ca ten in  s igna l ing  leads  to 
proliferation of HSCs142) and is associated with vari-
ous cancers including AML143,144), while canonical 
WNT/β-catenin signaling is indispensable for normal 
adult hematopoiesis145). Thus, WNT/β-catenin sig-
naling could be a potential therapeutic target to pre-
vent leukemic transformation from preleuke-
mia. The MDMX/CK1α/β-catenin axis was also 

confirmed by another group using pull-down and en-
zyme kinetic assays146). 

MDMX overexpression in preleukemic patients

 In addition to overexpression of MDMX in 
AML113-115), we have shown that patients with MDS 
whose HSCs express MDMX present with upregula-
tion of WNT/β-catenin and a higher risk of leukemic 
transformation111). Overexpression of MDMX is 
also associated with leukemic transformation from 
MPN118,147).

MDMX inhibitors for myeloid malignancies

Various MDM2/MDMX dual inhibitors (small 
molecules and peptides) are available in clinical set-
tings148,149). Among these, the first-in-class struc-
turally stabilized (stapled) peptide, ALRN-6924, has 
been tested in myeloid malignancies both in preclini-
cal and clinical trials114,150-152). However, a phase 1 
clinical trial of ALRN-6924 for AML (NCT02909972) 
revealed insufficient anti-AML effect, therefore no 
phase 2 trial has been conducted.

From the findings mentioned above, we specu-
late that overexpression of MDMX is required for 
transition from preleukemia to AML, rather than 
maintenance of AML. Therefore, an MDMX inhibi-
tor could be used for preleukemic conditions. We 
also suppose that targeting the p53-independent on-
cogenic mechanism of MDMX mentioned above 
might enhance the effect of ALRN-6924. We tried 
β-catenin inhibitor in addition to ALRN-6924 and 
observed delayed disease onset in murine AML 
models111). 

Summary

 The disruption of splicing is the main cause of 
the overexpression of MDMX, although its details 
have not been fully elucidated. MDMX induces 
leukemic transformation from preleukemic condi-
tions via suppression of p53 and p53-independent 
activation of WNT/β-catenin signaling. Activation 
of WNT/β-catenin signaling is provoked by MDMX’s 
occupation of CK1α which is the degrader of 
β-catenin (Figure 2). MDMX inhibition in a preleu-
kemic stage shows promise as a strategy for leuke-
mia prevention.

Discussion

 As AML arises from preleukemic myeloid dis-
orders, leukemia prevention therapy could be a rea-
sonable choice for high-risk patients with CH, MDS, 
and MPN. However, intervention to prevent the 
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Fig. 2. The implication of MDMX on myeloid malignancies.
  Schematic showing the mechanisms of MDMX overexpression and the resultant inactivation of p53 and activation 

of WNT/β-catenin signaling. Increased transcription of MDMX-FL compared to MDMX-S results in MDMX 
overexpression. MDMX shuttles into the nucleus when it binds with MDM2 and prevents p53 transactiva-
tion. In addition, MDMX in the cytoplasm binds with CK1α and induces its reduced abundance. It leads to the 
accumulation of β-catenin and increased nuclear transport.

Fig. 3. The summary of the role of overexpressed HMGA2 and MDMX.
 Schematic explanation of how overexpression of HMGA2 and MDMX is involved in the progression from preleu-

kemic disease to fatal myeloid malignancies. AML : acute myeloid leukemia, MDS : myelodysplastic syndrome, 
MPN : myeloproliferative neoplasms.
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transformation from preleukemia to AML has thus 
far not been successful. Although AML onset re-
quires relatively small numbers of mutations com-
pared to other cancers153), AML is still a diverse dis-
ease manifesting with various genetic alterations1-4).    
Targeting every single mutation is thought to be im-
practical, especially in a preleukemic stage, because 
we cannot specify future leukemic clones during this 
period. Instead, targeting pathways commonly up-
regulated in transforming clones seems reason-
able. To achieve this, we have to sequentially in-
vestigate human/murine preleukemic and leukemic 
hematopoietic cells, perhaps at a single-cell level.

 With this in mind, HMGA2 and MDMX might 
be good candidates, although they require further 
study. Overexpression of HMGA2 induces expan-
sion of malignant clones via alteration of stem cell 
signatures55,100) (Figure 3). Also, because Hmga2-

null mice show no hematological phenotypes154), it 
may be indispensable for adult hematopoiesis.    
Therefore, we desire clinical-grade HMGA2 inhibi-
tors for preleukemic patients. MDMX should be a 
more promising target because it is overexpressed 
in the majority of AML samples regardless of muta-
tion status, and its overexpression directly induces 
leukemic transformation111) (Figure 3). Deletion of 
MDMX induces hematopoietic defects via overacti-
vation of p53, but spontaneous deletion of MDMX is 
not fatal for adult mice155). As well as its good tol-
erability in a phase 1 trial of MDMX inhibitor ALRN-

6924 (NCT02909972), we speculate that inhibition 
of overexpressed MDMX should be a safe and at-
tractive option for leukemia prevention, for which 
additional clinical trials are warranted.

 Furthermore, we should investigate more 
mechanistic details in preleukemic to leukemic tran-
sitions. Although HMGA2 and MDMX are sup-
posed to be common targets to prevent the transfor-
mation of preleukemia, a comprehensive analysis of 
preleukemic to leukemic human/murine models is 
needed.
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