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Abstract: Since COPD is a heterogeneous disease, a specific anti-inflammatory therapy for this
disease has not been established yet. Oxidative stress is recognized as a major predisposing factor
to COPD related inflammatory responses, resulting in pathological features of small airway fibrosis
and emphysema. However, little is known about effects of oxidative stress on airway smooth muscle.
Cigarette smoke increases intracellular Ca2+ concentration and enhances response to muscarinic
agonists in human airway smooth muscle. Cigarette smoke also enhances proliferation of these cells
with altered mitochondrial protein. Hydrogen peroxide and 8-isoprostans are increased in the exhaled
breath condensate in COPD. These endogenous oxidants cause contraction of tracheal smooth muscle
with Ca2+ dynamics through Ca2+ channels and with Ca2+ sensitization through Rho-kinase. TNF-α
and growth factors potentiate proliferation of these cells by synthesis of ROS. Oxidative stress can
alter the function of airway smooth muscle through Ca2+ signaling. These phenotype changes are
associated with manifestations (dyspnea, wheezing) and pathophysiology (airflow limitation, airway
remodeling, airway hyperresponsiveness). Therefore, airway smooth muscle is a therapeutic target
against COPD; oxidative stress should be included in treatable traits for COPD to advance precision
medicine. Research into Ca2+ signaling related to ROS may contribute to the development of a novel
agent for COPD.

Keywords: oxidants; antioxidants; Ca2+ dynamics; Ca2+ sensitization; tracheal smooth muscle;
phenotype changes; reactive oxygen species

1. Introduction

Although chronic obstructive pulmonary disease (COPD) is simply diagnosed based
on persistent air flow limitation that will not return to the normal range, using spirometric
measurements, this disease is heterogenous and complex in symptoms, disease progression,
lung function and response to therapies [1]. The pathogenesis of this disease results from
chronic lung inflammation due to cigarette smoke and other environmental exposures
(biomass fuel etc.); and this chronic inflammation is associated with activation not only of
neutrophils and macrophages but also of eosinophils. While these responses to lung in-
flammation are normal in many healthy subjects, in contrast, the response is potentiated in
patients who develop COPD. This chronic lung inflammation affects distal airways, leading
to emphysema and small airway fibrosis (pathological characteristics of this disease) [2,3];
and these pathological alterations in COPD are progressive in most cases [1]. The mecha-
nisms of this modified inflammation are not understood well. Moreover, a wide variety
of inflammatory mediators are related to this chronic lung inflammation. For this reason,
specific treatment for inflammation is not well established in this disease. Oxidative stress
is defined as a state in which oxidation exceeds the capacity of antioxidant systems in the
body secondary to a loss of the balance between them. Disturbances in the normal redox
state of cells can cause toxic effects through the production of peroxides and free radicals
that damage all components of the cell, including proteins, lipids, and DNA. Oxidative
stress from oxidative metabolism causes base damage, as well as strand breaks in DNA.
Base damage is mostly indirect and caused by reactive oxygen species (ROS) generation,
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e.g., O2
•− (superoxide anion radical), •OH (hydroxyl radical), H2O2 (hydrogen peroxide)

and O3 (ozone) (Figure 1) [4]. Inflammatory cells as described above are recruited into
the lungs in COPD [5]; and structural cells in the respiratory system (airway epithelial
cells, fibroblasts, and endothelial cells) also contribute to the lung inflammation. These
cells generate multiple mediators, including cytokines that perpetuate and amplify the
inflammation in the lungs. These cells are also important sources of ROS, leading to
oxidative stress in the lungs (Figure 1). Oxidative stress in the lungs due to exogenous
oxidants (cigarette smoke, biomass fuel, air pollution) and endogenous oxidants (ROS
generated by inflammatory cells, epithelium) are associated with clinical and pathophysio-
logical characteristics of COPD (Figure 1) [6]. Mitochondrial respiration is an important
source of ROS, and cigarette smoke produces excessive ROS via mitochondrial dysfunction
(Figure 1) [7]. It is now generally considered that COPD results from an acceleration of lung
ageing with the accumulation of senescent cells [8–10]. Senescent cells secrete high levels of
inflammatory cytokines, immune modulators, growth factors, and proteases, referred to as
senescence-associated secretory phenotype (SASP) [10]. This phenotype change is perhaps
an essential mechanism in the chronic lung inflammation of COPD [11]. Since senescent
cells also release ROS more than intact cells, this chronic lung inflammation potentiates
oxidative stress in COPD (Figure 2). Therefore, oxidative stress is probably a major driving
mechanism of many of the pathophysiological changes in COPD [12].
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Figure 1. Oxidants and antioxidants involved in COPD, and relationships between oxidative stress
and the pathology related to this disease. Oxidative stress in the lungs results from increased
exogenous and endogenous oxidants, and from reduced antioxidants. Endogenous oxidants are
generated by mitochondrial respiration. Elevated production of endogenous oxidants continues after
stopping smoking. Increased oxidative stress is caused by a lack of balance between oxidants and
antioxidants. Exogenous oxidants are derived from cigarette smoke, air pollution and biomass smoke,
etc.; endogenous oxidants are derived from inflammatory cells (macrophages, neutrophils) and airway
epithelial cells. Oxidative stress results in emphysema in alveolar areas with decreased antiproteases,
and in fibrosis in the small airways with increased transforming growth factor (TGF)-β. PM: small
particulate matter, 8-OHdG: 8-hydroxy-2′-deoxyguanosine, 8-OHG: 8-oxo-7,8-dihydroguanosine,
NOX: membrane-bound NADPH oxidases, Nrf2: nuclear erythroid-2 related factor 2, FOXO3a:
forkhead box O3a. Arrows: activation, dotted arrows: inactivation.
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Figure 2. Roles of senescence in inflammatory and airway epithelial cells to enhance oxidative stress
in COPD. These senescent cells in the lungs synthesize inflammatory cytokines, growth factors
proteases, and ROS more than intact cells in them, referred to as senescence-associated secretary
phenotype (SASP). These phenotype changes in these cells perhaps potentiate not only the lung
inflammation but also oxidative stress in COPD. ROS: Reactive oxygen species.

To improve the management and treatment for COPD, patients with COPD should be
classified by grouping according to distinct clinical phenotypes. These groupings, based on
multiple dimensions (clinical, physiological, imaging, and endotyping) determine clusters
of patients with common characteristics, which are associated with clinically meaningful
outcomes such as symptoms, exacerbations, response to therapy, and disease progres-
sion (stratified medicine). Moreover, since several phenotypes can coexist in individual
patients with COPD, an approach due to therapeutic target identified phenotypes and
endotypes (treatable traits) has been proposed as an advanced therapy recently (precision
medicine) [13]. Although oxidative stress perhaps plays an important role in amplifying the
chronic lung inflammation in COPD [14], little is currently known about the involvement
of oxidative stress in the pathogenesis of COPD. Therefore, research for clinical phenotype
classification focused on oxidative stress is needed to establish precision medicine for
development of the therapeutic management for COPD.

In this chapter, roles of oxidative stress on airway smooth muscle are described with
fucuses on functional alterations that bring about phenotype changes related to the charac-
teristic pathophysiology in COPD. Involvement of Ca2+ signaling due to Ca2+ dynamics
and Ca2+ sensitization is also reviewed as a mechanism of the functional alterations in
airway smooth muscle induced by oxidative stress in COPD.

2. Oxidative Stress in COPD
2.1. Pathological Features

Oxidative stress occurs in the lungs during COPD, leading to characteristic patholog-
ical changes in this disease (Figure 1). It is well proven by data derived from bronchial
biopsy [15], sputum examination [16], and in vitro studies [17] that inflammatory cells such
as neutrophils, macrophages and T lymphocytes infiltrate and various proinflammatory
molecules are present at increased levels in smokers’ lungs. Inflammatory cells, particularly
neutrophils and macrophages that are recruited into the lungs, as well as structural cells,
such as airway epithelial cells and fibroblasts, generate endogenous oxidants (ROS) in the
lungs, leading to destruction of peripheral airways and alveoli. Mitochondrial respiration
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in these related cells is a key source of ROS, and cigarette smoke enhances generation of
ROS through mitochondrial dysfunction, supporting the pathophysiological characteristics
in COPD [18,19]. These destructive processes overcome the local protective mechanisms,
and cause tissue damage without manifestations. The inflammatory tissue damage may be
perpetuated for a long time after smoking cessation in patients with COPD [20]. Cigarette
smoke causes the chronic lung inflammation; however, only about 20% of smokers develop
COPD, indicating that there are factors that increase susceptibility and amplify the normal
inflammatory response to cigarette smoke. Although these mechanisms are still unknown
in detail, this phenomenon is probably involved in oxidative stress due to synthesis of ROS
and imbalance of local proteolysis/antiproteolysis states that are related to oxidative stress
(imbalance of oxidants/antioxidants).

2.2. Oxidants Related to COPD

Oxidative stress is recognized as a major predisposing factor of the inflammatory
response related to COPD. Oxidative stress is probably associated with the pathology
and severity of COPD. Oxidative stress is potentiated in patients with COPD, especially
when acute exacerbations occur. Cigarette smoke, air pollution and biomass smoke are
major exogenous oxidants related to COPD in the lungs, referred to as exogenous oxidative
stress, but oxidative stress also arises from endogenous processes due to endogenous
oxidants, after stop smoking, referred to as endogenous oxidative stress (Figure 1). The
number of activated alveolar macrophages is markedly increased in the lungs of patients
with COPD, compared to healthy subjects; and a large amount of ROS is released from
these activated macrophages as superoxide anions and hydrogen peroxide (H2O2) [21].
This phenomenon is more potentiated during COPD exacerbations. Activated neutrophils
also infiltrate to the lungs in patients with COPD, and activated neutrophils release a
large amount of ROS, especially during COPD exacerbations [22]. In patients with COPD,
generation of 4-hydroxy-2-nonenal (4HNE) is increased in the lungs, indicating that lipid
peroxidation, a marker of oxidative stress, occurs on endogenous lipids [23]. Clinical
studies have demonstrated that H2O2, 8-isoprostane, 4HNE, myeloperoxidase (MPO)
and malondialdehyde (MDA) (endogenous oxidants as biomarkers of oxidative stress)
are increased in exhaled breath condensate in patients with COPD [13,24–27], compared
to healthy individuals; and these makers are more elevated during exacerbations [28].
These markers, such as MDA, 8-isoprostane, 8-hydroxy-2′-deoxyguanosine (8-OHdG) and
MPO, are also elevated in sputum from patients with COPD [29,30]. Furthermore, nucleic
acid oxidation, 8-oxo-7,8-dihydroguanosine (8-OHG) in RNA and 8-OHdG in DNA are
elevated in alveolar lung fibroblasts from patients with emphysematous COPD [18,31].
These augmented biomarkers of oxidative stress do not decrease, and remain elevated in
ex-smokers after the cessation of smoking, suggesting that persistent lung inflammation is
caused by endogenous oxidative stress [25].

The respiratory system is constantly exposed to oxidative stress due to sources of
endogenous ROS generated by mitochondrial respiration and inflammatory responses to
bacterial and viral infections. The persistent oxidative stress in COPD results not only from
activated neutrophils and macrophages but also from epithelial cells in the respiratory
system. Oxidative stress is associated with mitochondrial respiration in these structural
cells [32]. Other sources of intracellular ROS include the cytoplasmic ROS generating en-
zymes, such as membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases (NOX) and the xanthine/xanthine oxidase system, as well as neutrophil derived
MPO [33]. Superoxide anions, relatively weak oxidizing agents, are mainly produced
endogenously by NOX; and are rapidly converted to more damaging ROS, such as the
hydroxyl radical and H2O2, or the powerful and damaging peroxynitrite radical in the
presence of nitric oxide (NO) [34]. MPO is released from activated neutrophils which
are recruited into the lungs of patients with COPD; MPO also produces very destructive
hypochlorous acid such as 3-chlorotyrosine [35]. However, in healthy adults, intracellular
antioxidant defenses can overcome these damaging ROS, thus limiting their cellular effects;
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on the other hand, in patients with COPD these antioxidant defenses are overwhelmed.
Increased oxidative stress has great effects on driving the pathophysiology of COPD as
described below [33]. Oxidative stress causes activation of the proinflammatory transcrip-
tion factor nuclear factor-KB (NF-κB) pathways; expression of NF-κB is augmented in
COPD in airway epithelium and macrophages in patients with COPD. Oxidative stress
also causes activation of the transforming growth factor (TGF)-β1 pathways, which acts
on the lung epithelium, and induces fibrotic repair via driving epithelial-to-mesenchymal
transition (EMT) [36], leading to small airway fibrosis. The inhibitory effects of TGF-β1 on
nuclear erythroid-2 related factor 2 (Nrf2) bring about reduced expression of endogenous
antioxidants [37]. Oxidative stress increases the expression of matrix metallopeptidase 9
(MMP9), an elastolytic enzyme, related to the development of emphysema.

2.3. Antioxidants Related to COPD

Increased oxidative stress may be potentiated with a reduction in endogenous anti-
oxidant-induced defenses in patients with COPD (Figure 1). A clinical trial has demon-
strated that concentrations of glutathione are lower in bronchoalveolar lavage fluid from
unstable COPD patients with frequent exacerbations than in that from stable COPD [38].
Extracellular superoxide dismutase (SOD3) is decreased around small airways in patients
with COPD [39]. Thioredoxin, which is an important regulator of redox balance, is de-
creased in COPD [38]. Nrf2 and forkhead box O3a (FOXO3a) are decreased in the lungs of
patients with COPD [40,41]. Nrf2 and FOXO3a, which are key transcription factors that
regulate multiple antioxidant genes, protect the respiratory system against oxidative dam-
age [42]. Nrf2 is activated in healthy smokers, but its activation is impaired by oxidative
stress in patients with COPD, resulting in reduced antioxidant gene expression [42]. Glu-
tathione peroxidase is decreased in the lungs of COPD patients [43]. Glutathione peroxidase
transgenic mice are protected against the development of inflammation and emphysema
after cigarette smoke exposure, whereas glutathione peroxidase gene knockout increases
the tissue destruction in the lung’s response to cigarette smoke [44]. Imbalance between
oxidants and antioxidants probably plays an essential role in the chronic inflammation
related to the pathology of COPD (Figures 1 and 2).

2.4. Reduced Responsiveness to Corticosteroids Caused by Oxidative Stress

Oxidative stress probably causes corticosteroid resistance in COPD. Oxidative stress
reduces activity and expression of histone deacetylase-2 (HDAC2), which is required for
inflammatory gene suppression [45], by activation of phosphoinositide-3-kinase (PI3K)-
δ [46]. This phenomenon prevents the acetylation of glucocorticoid receptors, which
is necessary for the inhibition of NF-κB that mediates the anti-inflammatory effects of
corticosteroids, leading to reduced responsiveness to corticosteroids. Therefore, chronic
lung inflammation is not fully inhibited by corticosteroids in COPD, different from mild
asthma [6,33]. Recent preclinical studies have indicated that improvement of the redox
balance by the administration of antioxidants or the stimulation of endogenous antioxidant
response may overcome the corticosteroid resistance in COPD [47,48]. Nrf2 is known to act
as an antioxidant. Sulforaphate, an activator of Nrf2, improves reduced responsiveness to
corticosteroids mediated by upregulation of Nrf2 and enhancement of HDAC2 expression
and activity in the allergen challenged mice that were exposed to cigarette smoke [49]. Nrf2
may be a potential molecular target for cigarette smoke-related resistance to corticosteroids
in COPD.

3. Dysfunction of Airway Smooth Muscle in COPD
3.1. Phenotype Changes

Airway smooth muscle cells in culture have the ability to change the degree of various
functions such as contractility, proliferation, migration, and the synthesis of inflammatory
mediators [50–52]. Alterations of airway smooth muscle cells from a contractile to a syn-
thetic or a proliferative phenotype is involved in the pathophysiology of asthma and COPD,
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such as in airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization,
and airway remodeling. These phenotype changes cause an abnormality in the function
of airway smooth muscle. The dysfunction of airway smooth muscle occurs in asthma
and COPD; and this phenomenon is associated with symptoms, a decline in lung function
and the pathophysiology characterized by these diseases, and brings about contractile
abnormality, release of inflammatory mediators, and hypertrophy in airway smooth mus-
cle [53,54]. Airway smooth muscle cells can alter the degree of a variety of functions,
including contraction, proliferation, migration, and the secretion of inflammatory media-
tors, referred to as phenotype plasticity. Characteristic features (major pathophysiology) of
asthma and COPD, such as airflow limitation, airway hyperresponsiveness, β2-adrenergic
desensitization, and airway remodeling, probably occur through phenotype changes in
airway smooth muscle cells [50–52]. Changes between contractile and hyper-contractile,
synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization,
which are associated with the pathophysiology of these diseases [50–52]. Ca2+ dynamics
through the large-conductance Ca2+-activated K+ (KCa) channel/L-type voltage dependent
Ca2+ (VDC) channel linkage, and Ca2+ sensitization through the RhoA (a monomeric G
protein)/Rho-kinase (a target molecule of RhoA) pathway is involved not only in alterations
in the contractile phenotype related to airflow limitation, airway hyperresponsiveness and
β2-adrenergic desensitization but also in alteration of the synthetic/proliferative phenotype
related to airway remodeling [50,52].

3.2. Airway Hyperresponsiveness

Responsiveness to contractile and relaxant agents in airway smooth muscle is modified
not only by inflammatory response related to asthma and COPD but also by excessive
exposure to β2-adreneric agonists (Figure 3). Airway hyperresponsiveness is clinically
shown as augmented responsiveness to muscarinic agonists or histamine. This pathophys-
iological alteration is a hallmark of asthma; but is observed in some cases of COPD [55].
Dysregulation of contractility is not as widely documented in airway smooth muscle of
COPD, however patients with airflow limitation are shown to be very sensitive to inhaled
methacholine [56], and the tissues of airway smooth muscle from patients with obstructive
lung disease (with all but one characterized as having COPD) demonstrate significantly
increased maximal isometric force and isometric stress, which is correlated to decline in
lung function [57]. Increased contractility in airway smooth muscle causes manifestations
(dyspnea, wheezing), airflow limitation and airway hyper-responsiveness. Airway hyper-
responsiveness is associated with inflammation related to the pathogenesis of asthma and
COPD. Airway hyperresponsiveness may have a harmful effect on therapy for asthma-
COPD overlap, since response to inhaled corticosteroids with bronchodilators is reduced in
patients with COPD who have eosinophilia and hyperresponsiveness in the airways [55].

Airway hyperresponsiveness is brought from Th2 cytokines such as interleukin (IL)-4,
IL-13 that generate IgE [58,59]; involvement of IL-5 in this pathophysiology is still contro-
versial. Adenosine triphosphate (ATP), which is released from injured epithelium in the
airway by activated eosinophils, causes airway hyperresponsiveness with no change in con-
centration of intracellular Ca2+ [60] (Figure 3). Mast cells infiltrate airway smooth muscle in
asthma, referred to as mast cell myositis. Exposure to tryptase and sphingosine 1-phosphate
(S1P), which are released from mast cells, also causes airway smooth muscle contraction
with an increase in concentration of intra-cellular Ca2+, and airway hyperresponsiveness
with no change in Ca2+ (Figure 3) [61,62]. Ca2+ sensitization due to the RhoA/Rho-kinase
processes is involved in airway hyperresponsiveness, which reflects a correlationship
between inflammatory cells and airway smooth muscle cells [50,52,60,62,63].
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Figure 3. Interactions between inflammatory cells and airway smooth muscle cells in the patho-
physiology of COPD. Functions (tension generation and response to contractile agents) of airway
smooth muscle cells are altered (phenotype changes) by inflammatory substances (cytokines, growth
factors, serine proteinases, phospholipids), which are synthesized in inflammatory cells (mast cells,
eosinophils, etc.). Ca2+ signaling (Ca2+ dynamics and Ca2+ sensitization) is involved in the dys-
function of airway smooth muscle cells, leading to airflow limitation, β2-adrenergic desensitization
and airway hyperresponsiveness (the pathophysiology features of asthma and COPD). Lyso-PC:
lysophosphatidylcholine, TGF-β1: transforming growth factors-β1, PDGF: platelet-derived growth
factor, ATP: adenosine triphosphate, S1P: sphingosine 1-phosphate, KCa: Ca2+-activated K+ channel,
VDC: L-type voltage-dependent Ca2+ channel. Arrows: activation.

3.3. β2-Adrenerigic Desensitization

Short- and long-acting β2-adrenergic agonists are widely used as bronchodilators as
reliever and controller therapy for both asthma and COPD. Reduced responsiveness to β2-
adrenergic agonists occurs in airway smooth muscle after excessive (repeated or sustained)
exposure to these agonists and after persistent inflammation related to asthma and COPD,
referred to as β2-adrenergic desensitization (tachyphylaxis) [64–66]. Repeated application
of β2-adrenergic agonists results in a gradual reduction of their relaxant effects on mus-
carinic airway contraction. When isoprenaline, a full agonist, is repeatedly applied eight
times every 30 min, relaxant effects of isoprenaline disappear almost completely in airway
smooth muscle [66]. In contrast, relaxant effects of partial agonists such as formoterol are
just slightly reduced under the same experimental conditions [67]. This phenomenon is not
observed after excessive exposure to other cAMP-related agents bypassing β2-adrenergic
receptors, such as forskolin or theophylline [64,65]. Agonist-induced dysfunction of β2-
adrenergic receptors results from homologous desensitization in airway smooth muscle,
not heterologous [64,65]. This phenomenon is caused by uncoupling the stimulatory G
protein of adenylyl cyclase (Gs) from phosphorylated β2-adrenergic receptors, not by down
regulation, because of exposure time within 30 min [64,65].

Intrinsic efficacy, which is related to allosteric effects, is involved in homologous β2-
adrenergic desensitization, which is associated with Ca2+ dynamics due to inhibitory link-
age between Gs and large conductance Ca2+-activated K+ (KCa) channels (Figure 3) [52,64–68].
The linkage of Gs/KCa channels is deeply involved in the functional antagonism between
muscarinic and β2-adrenergic action in airway smooth muscle [69–71]. Reduced responsive-
ness to β2-adrenergic agonists in airway smooth muscle also occur after persistent exposure
to cytokines (IL-1β, tumor necrosis factor-α: TNF-α) [72], growth factors (Transforming
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Growth Factor-β1: TGF-β1, platelet-derived growth factor: PDGF) [73,74], phospholipids
(S1P, lysophosphatidylcholine: Lyso-PC) [75,76], and mast cell tryptase [77], which are
deeply involved in the pathogenesis of asthma and COPD (Figure 3). Pre-exposure to
Lyso-PC, tryptase and S1P cause homologous β2-adrenergic desensitization mediated by
Ca2+ sensitization due to RhoA/Rho-kinase processes. In contrast, pre-exposure to TGF-β1
and PDGF cause heterologous β2-adrenergic desensitization mediated by Ca2+ dynamics
due to KCa channel inhibition. β2-Adrenergic desensitization in airway smooth muscle is
caused not only by therapy but also pathogenesis related to asthma and COPD.

3.4. Airway Remodeling

Airway smooth muscle can change to synthetic and proliferative phenotypes after ex-
posure to various exogenous stimuli, such as matrix (ECM, in particular, collagen type 1 and
fibronectin) and growth factors (PDGF and TGF-β), leading to airway remodeling [51,78].
Airway smooth muscle cells derived from patients with asthma show alterations towards
a more proliferative phenotype than when derived from healthy subjects [79]. Exposure
to IL-13 and PDGF-BB causes an increase in recapitulation of a more secretory and prolif-
erative phenotype, resulted from a decrease in expression of the SR Ca2+ ATPase (a Ca2+

transporter) [80]. A synthetic phenotype is caused by an increase in synthetic organelles
for protein and lipid synthesis (the Golgi apparatus and numerous mitochondria); and
proliferative capacity is induced. Modulation towards proliferative and synthetic pheno-
types is associated with an increase in non-muscle MHC, l-caldesmon, vimentin, α/β-PKC
and CD44 homing cellular adhesion molecule [44]. In airway smooth muscle cell culture,
20–60% of the cells express secretory capacity; on the other hand, approximately 50% of
the cells express proliferative capacity. Cytokine production and proliferation may be
overlapping and not independent functions [81]. Hence, airway smooth muscle contributes
to the inflammatory environments in both asthma and COPD, because of releasing various
cytokines and chemokines in response to asthma and COPD related stimuli [82]. An in-
crease in the amount of airway smooth muscle resulting from hypertrophy and hyperplasia
is observed surrounding the central and peripheral airways in asthma and COPD (airway
remodeling) [83,84].

4. Airway Smooth Muscles Regulated by Oxidative Stress
4.1. Expression of Oxidants in Airway Smooth Muscle

It is generally considered that oxidative stress influences the function of airway smooth
muscle in COPD [85]. Cigarette smoke is the most encountered risk factor for COPD across
the world. Cigarette smoke contributes to oxidative stress by induction of ROS production
in COPD [86,87], leading to the development of COPD. Since airway smooth muscle plays
an important role in tension and inflammation related to the pathophysiology of asthma
and COPD, oxidative stress probably affects the function of airway smooth muscle in these
diseases (Figure 4). Expression of the ROS generating enzyme NADPH oxidase (NOX)-4
is enhanced in airway smooth muscle from patients with COPD; increased expression of
NOX-4 is correlated with disease severity and lung function decline [88]. H2O2 stimulated
ROS production is completely abolished by an inhibition of NOX-4 in airway smooth
muscle [89]. Therefore, oxidative stress causes the dysfunction of airway smooth muscle
in COPD; and NOX-4 is probably a potential therapeutic target for COPD. Apocynin, a
non-selective inhibitor of NOX, inhibits the inflammatory response to cigarette smoke in
mice [90], although clinical trials have not been reported yet in COPD.
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Figure 4. Involvement of oxidative stress in the dysfunctions of airway smooth muscle cells in COPD.
Cigarette smoke enhances contractility caused by Ca2+ dynamics through TRP and SOCE. TNF-α
and grows factors (TGF-β1, PDGF, and EGF) synthesize ROS, resulting in amplified cell proliferation
through mitochondrial morphological changes, resulting in potentiated response to contractile agents
(airway hyperresponsiveness) and increased mass of airway smooth muscle (airway remodeling,
airflow limitation), which are pathological and pathophysiological characteristics of COPD. Nrf2
inhibits effects of TGF-β1 on oxidative stress. TRP: transient receptor potential, SOCE: store-operated
Ca2+ entry. TNF-α: tumor necrosis factor-α, TGF-β1: transforming growth factor-β1, PDGF: platelet-
derived growth factor, EGF: epidermal growth factor, Nrf2: nuclear erythroid-2 related factor 2, ROS:
reactive oxygen species. Drp1: dynamin-related protein 1, Mfn2: mitofusin 2. Arrows: activation;
dotted arrows: inactivation.

4.2. Effects of Oxidative Stress on Contraction and Proliferation

Oxidative stress can induce changes in the degree of various functions such as con-
tractility, proliferation, migration, and the synthesis of inflammatory mediators in airway
smooth muscle cell [50–52,67,85]. These phenotype changes of airway smooth muscle
are deeply involved in the symptoms (e.g., dyspnea, wheezing) and the pathophysiol-
ogy (e.g., airflow limitation, airway hyperresponsiveness, airway remodeling) of COPD
(Figures 3 and 4) [50–52,67,85]. It is unclear in detail whether cigarette smoke extract
causes contraction of airway smooth muscle. However, H2O2 and 8-iso-PGF2α, which are
oxidative stress markers that are elevated in exhaled breath (EB) from patients with COPD,
cause contraction of tracheal smooth muscle in guinea pigs in a concentration-dependent
manner [91,92], indicating that oxidative stress contributes to dyspnea, wheezing, and
airflow limitation by an increase in the airway tension in COPD. Pre-exposure to cigarette
smoke extract markedly enhances acetylcholine-induced force in human bronchial smooth
muscle [93], indicating that cigarette smoke extract causes airway hyperresponsiveness.
Nicotine, which can induce oxidative stress, also contributes to airway hyperresponsive-
ness (Figure 4) [94]. Nicotine-stimulated fibroblast-conditioned media increase expression
of the contractile protein p-MLC in airway smooth muscle cells [95]; and nicotine also
causes upregulation of nicotinic α7 acetyl-choline receptor (α7nAChR) expression in air-
way smooth muscle cells [94], indicating that nicotine enhances contractility in airway
smooth muscle. TNF-α generates ROS in airway smooth muscle cells [96,97]; and TNF-α
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enhances contractile response to a muscarinic agonist (airway hyperresponsiveness) with
ROS-dependent phosphorylation of MLC, which is the contractile protein [98].

Cigarette smoke increases cell numbers in bovine tracheal smooth muscle with cyclin
D1 expression and DNA synthesis via activation of ERK 1/2 and p38 MAP kinase [99].
Exposure to cigarette smoke also causes cell proliferation on rat airway smooth muscle with
expression of transient receptor potential cation channel subfamily M member 7 (TRPM7)
which is activated by ROS [100,101]. Cigarette smoke causes mitochondrial fragmenta-
tion and disruption of mitochondrial networks through imbalance of the mitochondrial
fission versus fusion. This phenomenon is due to an increase in dynamin-related protein
1 (Drp1) expression (fission) and a decrease in mitofusin 2 (Mfn2) expression (fusion),
involving PI3K/Akt, PKC and ERK activation and transcriptional regulation via NF-κB [7].
This morphological alteration in mitochondria (the imbalance of fission/fusion) is asso-
ciated with mitochondrial function, and is involved in proliferation/survival, response
to inflammation, extracellular matrix production, and Ca2+ regulation in airway smooth
muscle cells [102]. Cigarette smoke may induce not only a contractile phenotype but also
a proliferative phenotype of airway smooth muscle cells, which may be associated with
airflow limitation, airway hyperresponsiveness and airway remodeling in COPD (Figure 4).
Therefore, oxidative stress probably causes the dysfunction (phenotype changes) of air-
way smooth muscle cells with changes in mitochondrial morphology [7]. Growth factors,
such as TGF-β1, PDGF and EGF (epidermal growth factor), contribute to increased cell
proliferation and dysfunction of airway smooth muscle with ROS production in COPD [85].

4.3. Inhibitory Effects of Antioxidants on Oxidative Stress Induced Proliferation

TGF-β1 can induce expression of the ROS generating enzyme NOX-4 in airway smooth
muscle [37,99] via decapentaplegic family member 3 (SMAD3)/phosphoinositide 3-kinase
(PI3K) signaling, leading to increased proliferation in airway smooth muscle cells [37,103].
This TGF-β1 induced dysfunction of airway smooth muscle cells is attenuated by activation
of the antioxidant transcription factor Nrf2 [103]. In human tracheal smooth muscle cells,
Nrf2 causes expression of the antioxidant genes heme-oxygenase 1 (HO-1), with activation
of HO-1 reciprocally resulting in Nrf2 translocation from cytosol to nucleus [85]. The
Nrf2/HO-1 signaling may potentially contribute to protecting against dysfunction of
airway smooth muscle related to COPD since this process is involved in an inhibition not
only of cell proliferation but also in inflammation and contraction of airway smooth muscle
in the functional alterations caused by oxidative stress [85]. HO-1 activation causes an
inhibition in TNF-α induced expression of intercellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1) and generation of IL-6 via suppression of
TNF-α induced superoxide and H2O2 generation [104]. The Nrf2 pathway is implicated in
protecting against airway hyperresponsiveness in animal models [105]. The expression of
HO-1 is more decreased and net contractile moment is more increased in airway smooth
muscle from Nrf2 knockout mice compared to airway smooth muscle from wild type
mice, suggesting that the Nrf2/HO-1 process prevents augmented contractility by ROS
production [106]. Therefore, the Nrf2/HO-1 process is probably a therapeutic target against
the dysfunction of airway smooth muscle related to oxidative stress.

4.4. Clinical Trials for Antioxidant Therapy

Although it is well known that oxidative stress is a major factor leading to the devel-
opment of COPD, specific therapy using antioxidants has not been established yet in this
disease. Various oxidants are mentioned as a candidate involved in the pathophysiology of
COPD. However, much remains unclear. Related oxidants may be different for each patient
with COPD, and multiple oxidants may be involved for each patient.

Dietary antioxidants (vitamin C, vitamin E, resveratrol, and flavonoids) dot not have
significant effects on lung function and manifestation in patients with COPD [107,108].
Resveratrol may reduce ROS released from the airway epithelium in COPD in vitro; but the
clinical relevance of this result is unclear [109]. A retrospective study has indicated that a
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Mediterranean diet that includes many dietary antioxidants may prevent the development
of COPD [110]; but this result is still unclear because of confounding factors.

In clinical studies using chemical agents, thiol-based antioxidants (N-acetylcysteine,
carbocisteine, erdosteine) were administrated to patients with COPD. These agents that are
used as expectorant to reduce mucus viscosity, act as antioxidants by elevating glutathione
concentrations [111]. Some clinical studies on a small scale have indicated that these
agents can decrease the number of exacerbations in COPD [112]. In contrast, large-scale
trials have indicated that a high dose of N-Acetylcysteine has only modest efficacy in
reducing exacerbation frequency [113], and that a low dose of that agent has no effect [114].
Nrf4 is generally considered to regulate multiple antioxidant genes. HO-1, which is an
antioxidant gene regulated by Nrf2, can inhibit the development of emphysema, indicating
that activation of Nrf2 may be effective in combatting oxidative stress in COPD. However,
when sulforaphane, an activator of Nrf2, was administrated to patients with COPD for 4
weeks, this agent increased an antioxidant gene related to Nfr2 and inhibited oxidative
stress and inflammation [115]. Clinical studies using antioxidants for COPD have not been
reported other than these trials. Hence, the clinical significance of antioxidants still remains
unclear in this disease.

5. Calcium Signaling as Mechanisms of Oxidative Stress

5.1. Involvement of Ca2+ Dynamics in Oxidative Stress

It is considered that H2O2 and 8-isoprostane (8-iso-PG) F2α could be useful biomarkers
for oxidative stress in COPD [116,117], since these substances are elevated in exhaled
breath from patients with COPD. To determine the intracellular mechanism underlining
effects of oxidative stress on airway smooth muscle, H2O2, 8-iso-PG2α, and ATP were
cumulatively applied to the fura-2 loaded tissues of guinea pig tracheal smooth muscle;
and isometric tension and F340/F380 (an indicator for intracellular concentration of Ca2+)
were simultaneously recorded. H2O2, 8-iso-PG2α, and ATP generated tension with an
increase F340/F380 in a concentration-dependent manner (Figure 5) [91,92]. SKF96365, a
non-selective inhibitor of Ca2+ channels, markedly inhibited tension induced by H2O2, 8-iso-
PG2α, and ATP; in contrast, verapamil, an inhibitor of VDC channels, modestly inhibited
them [91,92]. Since SKF96465 is an inhibitor of receptor-operated Ca2+ influx through
transient receptor potential (TRP) channels and store-operated Ca2+ entry (SOCE) [118,119],
Ca2+ dynamics due to TRP channels and/or SOCE are probably associated with this oxidant-
induced contraction of tracheal smooth muscle; but, VDC channels may be less involved
(Figure 4) [91,92]. When ligands connect to the GTP-binding (G) protein-coupled receptor
(GPCR), Ca2+ is released from sarcoplasmic reticulum (SR), leading to SOCE, i.e., Ca2+

release-activated Ca2+ (CRAC) currents. SOCE is activated by stromal interaction molecule
1 (STIM 1), which is a Ca2+ sensor for store depletion in the SR (Figure 6). Although TRP
channels may be related to the conduction of SOCE, it has recently been considered that
the pore-forming protein Orai 1 is an essential component of the CRAC currents at the cell
membrane [120] (Figure 6). This STIM 1/Orai 1 coupling contributes to SOCE in airway
smooth muscle [121]. Although little is currently known about mechanisms of H2O2-
induced contraction, the effect of 8-iso-PG2α and ATP are associated with thromboxane A2
receptors (TP receptors) [92] and P2X (ATP-activated purinergic receptors) [60], respectively
(Figure 5). Endogenous oxidants such as H2O2, 8-iso-PG2α, and ATP cause contraction of
airway smooth muscle through Ca2+ dynamics, leading to dyspnea, wheezing and airflow
limitation in COPD (Figure 5). The contractile effect of other oxidants in airway smooth
muscle remains unclear. Although increased expression of NOX-4 is observed in airway
smooth muscle from COPD patients [88], the potential involvement of NOX-4 in Ca2+

dynamics and contractility is still unknown.
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Figure 5. Roles of Ca2+ signaling in effects of oxidative stress related to COPD on airway smooth
muscle. H2O2 and 8-iso-PGF2α, which are endogenous oxidants (oxidative stress biomarkers)
synthesized in inflammatory cells, cause contraction with Ca2+ dynamics through Ca2+ channels and
Ca2+ sensitization through the RhoA/Rho-kinase pathway. ATP, which is released from injury to
airway epithelium caused by ROS, generates tension with Ca2+ dynamics through Ca2+ channels,
and enhances muscarinic contraction with Ca2+ sensitization through the RhoA/Rho-kinase pathway.
The Ca2+ signaling (Ca2+ dynamics and Ca2+ sensitization) may contribute to airflow limitation
and airway hyperresponsiveness (pathophysiological features of COPD) caused by oxidative stress.
ROS: reactive oxygen species, ATP: adenosine triphosphate, TP: thromboxane A2 receptors, P2X:
P2X receptors (ATP-activated purinergic receptors), H2O2: hydrogen peroxide, 8-iso-PGF2α: 8-
isoprostaglandin F2α.

Recent studies using human airway smooth muscle cells have indicated that cigarette
smoke and cigarette smoke extract cause Ca2+ influx through TRP ankyrin 1 (TRPA1)
related to myosin light-chain phosphorylation, not L-type voltage-dependent Ca2+ (VDC)
channels [122], and enhance Ca2+ influx in responses to bradykinin and histamine, which
cause airway smooth muscle contraction through SOCE (Figure 4) [93]. Although cigarette
smoke does not cause force generation in airway smooth muscle, cigarette smoke enhances
response to bradykinin and histamine with SOCE (an increase in contractility), probably
leading to airway hyperresponsiveness. Cigarette smoke contributes to dysfunction in-
volved in contractility and proliferation in airway smooth muscle cells. Since cigarette
smoke enhances not only Ca2+ influx through TRP channels and SOCE but also expression
of Ca2+ regulatory proteins such as TRPC3, CD38, STIM1 (a sensor for Ca2+ concentration
in the SR), and/or Orai1 (Ca2+ channels in the plasma membrane) in human airway smooth
muscle cells, Ca2+ dynamics due to these processes play a critical role in alterations of
function and structure in the airways mediated by smoking-related oxidation [123]. Ex-
pression of TRPC3 and CD38 is also markedly increased in the airways of patients with
long-term smoking history compared to lifelong never smokers [122]. Mitochondria also act
on regulation of cytosolic Ca2+ concentration through interaction between STIM1 and Orai1.
Cigarette smoke-induced mitochondrial dysfunction enhances Ca2+ dynamics through
SOCE [124] (Figure 6).
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Figure 6. Chemical compounds that potentially act as antioxidants, and mechanisms (Ca2+ signaling)
related to oxidative stress in COPD. The chemical compounds, which are mimetics of SOD, include:
superoxide dismutase, GPx: glutathione peroxidase, activator of Nfr2: nuclear erythroid-2 related
factor 2, inhibitors of NOX: NADPH oxidases, MOP: myeloperoxidase, iNOS: inducible nitric oxide
synthase and mitochondria-related (mt)-related antioxidants; they are effective on oxidative stress
related to COPD in animal models and vitro studies. Biomarkers of oxidative stress related to COPD
(H2O2, 8-iso-PGF2α) and external ATP which are released from injured airway epithelium cause
contraction of airway smooth muscle via Ca2+ dynamics due to SOCE and Ca2+ sensitization due to
Rho-kinase. These Ca2+ signaling pathways are also associated with proliferation of airway smooth
muscle cell, and are inhibited by SKF96365 and Y-27632, respectively. ROS: reactive oxygen species,
TRP: transient receptor potential, SOCE: store-operated Ca2+ entry, STIM 1: stromal interaction
molecule 1, CaM: calmodulin, MLCK: myosin light chain kinase: MP: myosin phosphatase, MLC:
myosin light chain, IP3: inositol trisphosphate, IP3R: IP3 receptor, GPCR: G protein-coupled receptor.
Arrows: activation; dotted arrows: inactivation.

5.2. Involvement of Ca2+ Sensitization in Oxidative Stress

On the other hand, Y-27632, an inhibitor of Rho-kinase, inhibits H2O2- and 8-iso-PG2α-
induced contraction without a reduction in F340/F380 in the fura-2 loaded tracheal smooth
muscle of guinea pigs [91,92]. These results have demonstrated that Ca2+ sensitization
(increased sensitivity to intracellular Ca2+) related to Rho-kinase is involved in the airway
tension induced by oxidant stress in COPD (Figure 5). When a contractile agonist connects
to the GPCR, RhoA (a monomeric G protein) is activated by a trimeric G protein coupled to
the GPCR. Rho-kinase, which is a target molecule of RhoA, inactivates myosin phosphatase
acting on myosin phosphatase target subunit 1 (MYPT1) [62], leading to Ca2+-independent
contraction (Ca2+ sensitization) in airway smooth muscle. Ca2+ sensitization related to
the RhoA/Rho-kinase pathway contributes not only to muscarinic contraction [125] but
also to augmented response to muscarinic agonists [60,62,63], indicating that this Ca2+

sensitization is probably associated with symptoms (dyspnea, wheezing) and the patho-
physiology (airflow limitation, airway hyperresponsiveness) in COPD. It is still unclear
how oxidative stress induces airway epithelial disorder; however, ATP may be released
from injured epithelium leading to the pathogenesis of COPD [126]. Extra-cellular ATP
causes a modest increase in F340/F380 without contractile response; and muscarinic con-
traction is significantly enhanced without an increase in F340/F380 after exposure to ATP
(Figure 5) [60]. Extracellular ATP acts on P2X (ATP-activated purinergic receptors, different
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from GPCRs), and contributes to symptoms (dyspnea, wheezing) and the pathophysi-
ology (airflow limitation, airway hyperresponsiveness) via Ca2+ sensitization related to
the RhoA/Rho-kinase processes (Figure 5) [60]. Since 8-iso-PGF2α acts on thromboxane
receptors (GPCRs), oxidative stress due to 8-iso PGF2α causes airway contraction via d a
monomeric G protein. On the other hand, intracellular mechanisms are still unknown as
regards Ca2+ sensitization by H2O2 and ATP.

6. Toward the Progress of Therapy for COPD

Previous clinical trials have shown that N-acetylcysteine (a thiol-based antioxidant,
a precursor of glutathione) and sulforaphate (an activator of Nrf2) are not so effective in
COPD, as noted above. In addition, previous studies using animal models and in vitro have
indicated that several chemical compounds have effects against oxidants related to COPD,
including: AEOL 10150 (a superoxide dismutase mimetics) [127], Ebselen (a glutathione
peroxidase mimetic) [128], Apocynin (a NADPH oxidase inhibitor) [90], AZD 5904 (a
myeloperoxidate inhibitor) [44], L-NIL (an: inducible nitric oxide synthase inhibitor) [129],
Bardoxolone methyl (a Nrf2 activator) [115], mitoQ, mitoTEMPO (mitochondria-targeted
antioxidants) [130–132] (Figure 6). However, clinical trials using them still have not been
carried out. Effects of setanaxib (a NADPH oxidase inhibitor) on COPD have not been
proved yet even in preclinical studies. H2O2 and 8-iso-PGF2α cause contraction in airway
smooth muscle; these contractile actions are attenuated in the presence of SKF96365 and
Y-27632 in a concentration-dependent manner [91,92]. These chemical compounds are
agents for Ca2+ signaling, i.e., the former is an inhibitor of Ca2+ influx such as SOCE
and TRP channels (Ca2+ dynamics), and the latter is an inhibitor of the Rho-kinase (Ca2+

sensitization) (Figure 6). Since Ca2+ signaling due to Ca2+ dynamics and Ca2+ sensitization
is probably related not only to contractile but also proliferative responses in COPD, these
Ca2+ signaling-related molecules such as Orai 1, TRP and Rho-kinase, could be treatable
traits for this disease. Clinical trials using chemical compounds related to Ca2+ signaling
are needed to establish more suitable precision medicine (personalized medicine) for
COPD (Figure 7).
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Figure 7. Precision medicine (personalized medicine) in COPD. The present guideline for COPD
recommends that pharmacologic therapy for stable periods is carried out as a strategy based on
symptoms (dyspnea) and frequency of exacerbations as treatable traits. Since COPD has heterogeneity,
distinct phenotype classification is needed based on multidimensional approaches to advance from
stratified medicine to personalized medicine in the management of COPD in near future. Although
the clinical relevance of oxidative stress is still unclear, several oxidants can serve as treatable traits
for development of precision medicine in COPD. See Section 6 in this text.
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Although many previous reports have indicated that oxidative stress is perhaps in-
volved in the pathophysiology of COPD, little is currently known about its clinical relevance
in detail, as described above. There is still uncertainty regarding which is the most impor-
tant oxidant in COPD, or how many oxidants are involved in each patient with COPD.
Involved oxidants may be different for each patient with COPD. In the present COPD
guideline (the 2023 GOLD report), dyspnea and exacerbations are shown as treatable
traits, and pharmacological therapy for stable COPD is recommended according to degree
of dyspnea and frequency of exacerbation as current precision medicine (individualized
medicine) [1]. However, since COPD has heterogeneity, the present strategy based on only
these two treatable traits may be not sufficient to guide stable long-term management for
COPD. Patients with COPD need to be classified according to distinct clinical phenotypes
based on multiple dimensions (clinical, physiological, imaging, endotypes) [13]. Although
H2O2 and 8-isoprostane, which are stated as biomarkers for oxidative stress in the 2023
GOLD report [1], are increased in the airway in most patients with COPD, novel precision
medicine including these oxidants has not been established yet. To advance the manage-
ment and treatment for COPD, it is necessary to provide precision medicine using oxidants
and antioxidants as treatable traits based on stratification of patients according to oxidants
and antioxidants for specific clinical phenotypes (Figure 6 and 7).

7. Conclusions

The inflammatory responses related to oxidative stress in COPD have great effects on
the function of airway smooth muscle. Because of this interaction between inflammatory
cells and airway smooth muscle cells, the function for contraction and proliferation is
altered in airway smooth muscle cells, leading to symptoms (dyspnea, wheezing), and
the pathophysiology (airflow limitation, airway hyperresponsiveness, airway remodel-
ing) in COPD. Ca2+ signaling (Ca2+ dynamics and Ca2+ sensitization) is involved in the
mechanisms of ROS (oxidative stress)-induced dysfunction of airway smooth muscle.
Therefore, oxidative stress should be included in treatable traits for COPD to establish
precision medicine; airway smooth muscle can be a novel therapeutic target for this dis-
ease. Research into Ca2+ signaling in airway smooth muscle will also be important for the
development of a novel agent for COPD.
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